Jump to content

Hemi-octahedron

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Hemi-octahedron
Typeabstract regular polyhedron
globally projective polyhedron
Faces4 triangles
Edges6
Vertices3
Euler char.χ = 1
Vertex configuration3.3.3.3
Schläfli symbol{3,4}/2 or {3,4}3
Symmetry groupS4, order 24
Dual polyhedronhemicube
Propertiesnon-orientable

In geometry, a hemi-octahedron is an abstract regular polyhedron, containing half the faces of a regular octahedron.

It has 4 triangular faces, 6 edges, and 3 vertices. Its dual polyhedron is the hemicube.

It can be realized as a projective polyhedron (a tessellation of the real projective plane by 4 triangles), which can be visualized by constructing the projective plane as a hemisphere where opposite points along the boundary are connected and dividing the hemisphere into four equal parts. It can be seen as a square pyramid without its base.

It can be represented symmetrically as a hexagonal or square Schlegel diagram:

It has an unexpected property that there are two distinct edges between every pair of vertices – any two vertices define a digon.

See also

References

  • McMullen, Peter; Schulte, Egon (December 2002), "6C. Projective Regular Polytopes", Abstract Regular Polytopes (1st ed.), Cambridge University Press, pp. 162–165, ISBN 0-521-81496-0