Naphthenic acid: Difference between revisions
MeghKhaire (talk | contribs) m Fixed duplicate references |
sectioning Tag: Disambiguation links added |
||
Line 35: | Line 35: | ||
}} |
}} |
||
}} |
}} |
||
'''Naphthenic acids''' ('''NAs''') are mixtures of several [[Cyclopentane|cyclopentyl]] and [[Cyclohexane|cyclohexyl]] carboxylic acids with molecular weights of 120 to well over 700 [[atomic mass unit]]s. The main [[Fraction (chemistry)|fractions]] are carboxylic acids with a carbon backbone of 9 to 20 carbons. McKee et al. claim that "naphthenic acids (NAs) are primarily cycloaliphatic carboxylic acids with 10 to 16 carbons",<ref>{{cite journal |title = Acute and Subchronic Mammalian Toxicity of Naphthenic Acids from Oil Sands Tailings |author1=Richard H. McKee |author2=Colin M. North |author3=Paula Podhasky |author4=Jeffrey H. Charlap |author5=Adam Kuhl |journal = International Journal of Toxicology |volume = 33 |issue = 1 |pages = 347–355 |date = February 2014 |doi = 10.1177/1091581813504229 |url=http://toxsci.oxfordjournals.org/content/66/2/347.short|doi-access = free }} {{verify source |date=September 2023 |reason=This ref was deleted Special:Diff/831906851 by a bug in VisualEditor and later restored by a bot from the original cite located at Special:Permalink/812721870 cite #1 - verify the cite is accurate and delete this template. [[User:GreenC_bot/Job_18]]}}</ref> although acids containing up to 50 carbons have been identified in heavy petroleum.<ref name="robbins-2001">Qian, K. and W.K. Robbins (2001). Resolution and identification of elemental compositions for more than 3000 crude acids in heavy petroleum by negative-ion microelectrospray high-field Fourier Transform ion cyclotron resonance mass spectrometry. ''Energy & Fuels.'' 15:1505-1511.</ref> |
'''Naphthenic acids''' ('''NAs''') are mixtures of several [[Cyclopentane|cyclopentyl]] and [[Cyclohexane|cyclohexyl]] carboxylic acids with molecular weights of 120 to well over 700 [[atomic mass unit]]s. The main [[Fraction (chemistry)|fractions]] are carboxylic acids with a carbon backbone of 9 to 20 carbons. McKee et al. claim that "naphthenic acids (NAs) are primarily cycloaliphatic carboxylic acids with 10 to 16 carbons",<ref>{{cite journal |title = Acute and Subchronic Mammalian Toxicity of Naphthenic Acids from Oil Sands Tailings |author1=Richard H. McKee |author2=Colin M. North |author3=Paula Podhasky |author4=Jeffrey H. Charlap |author5=Adam Kuhl |journal = International Journal of Toxicology |volume = 33 |issue = 1 |pages = 347–355 |date = February 2014 |doi = 10.1177/1091581813504229 |url=http://toxsci.oxfordjournals.org/content/66/2/347.short|doi-access = free }} {{verify source |date=September 2023 |reason=This ref was deleted Special:Diff/831906851 by a bug in VisualEditor and later restored by a bot from the original cite located at Special:Permalink/812721870 cite #1 - verify the cite is accurate and delete this template. [[User:GreenC_bot/Job_18]]}}</ref> although acids containing up to 50 carbons have been identified in heavy petroleum.<ref name="robbins-2001">Qian, K. and W.K. Robbins (2001). Resolution and identification of elemental compositions for more than 3000 crude acids in heavy petroleum by negative-ion microelectrospray high-field Fourier Transform ion cyclotron resonance mass spectrometry. ''Energy & Fuels.'' 15:1505-1511.</ref> |
||
==Nomenclature== |
|||
⚫ | Naphthenic acids are represented by a general formula C<sub>n</sub>H<sub>2n-z</sub> |
||
Naphthenic acid can refer to derivatives and isomers of [[naphthalene carboxylic acid]]. In the petrochemical industry, NA's refer to alkyl carboxylic acids found in petroleum.<ref>{{cite journal |doi=10.1016/j.fuel.2022.123775}}</ref> The term naphthenic acid has roots in the somewhat archaic term "naphthene" (cycloaliphatic but non-aromatic) used to classify hydrocarbons. It was originally used to describe the complex mixture of petroleum-based acids when the analytical methods available in the early 1900s could identify only a few naphthene-type components with accuracy. Today "naphthenic" acid is used in a more generic sense to refer to all of the carboxylic acids present in petroleum, whether cyclic, acyclic, or aromatic compounds, and carboxylic acids containing heteroatoms such as N and S. Although commercial naphthenic acids often contain a majority of cycloaliphatic acids, multiple studies<ref>{{cite journal|author1=Clemente, J. S. |author2=Fedorak, P. M. |title=A review of the occurrence, analyses, toxicity, and biodegradation of naphthenic acids|journal=Chemosphere|year=2005|volume=60|issue=5|pages=585–600|doi=10.1016/j.chemosphere.2005.02.065|pmid=15963797|bibcode=2005Chmsp..60..585C}}</ref><ref name=":0" /> have shown they also contain straight chain and branched aliphatic acids and aromatic acids; some naphthenic acids contain >50% combined aliphatic and aromatic acids. |
|||
Salts of naphthenic acids, called naphthenates, are widely used as hydrophobic sources of metal ions in diverse applications.<ref name=":1"/> |
Salts of naphthenic acids, called naphthenates, are widely used as hydrophobic sources of metal ions in diverse applications.<ref name=":1"/> |
||
==Classification== |
|||
⚫ | Naphthenic acids are represented by a general formula C<sub>n</sub>H<sub>2n-z</sub>O<sub>2</sub>, where ''n'' indicates the carbon number and ''z'' specifies a homologous series. The ''z'' is equal to 0 for saturated, acyclic acids and increases to 2 in monocyclic naphthenic acids, to 4 in bicyclic naphthenic acids, to 6 in tricyclic acids, and to 8 in tetracyclic acids.<ref name=":0">James Brient, Peter Wessner, Mary Doyle (1995). "Naphthenic Acid" in Kirk-Othmer, ed. ''Encyclopedia of Chemical Technology'' 4th ed. '''16''': 1017-1029''.''</ref> Crude oils with total acid number (TAN) as little as 0.5 mg KOH/g acid or petroleum fractions greater than about 1.0 mg KOH/g oil usually qualify as a high acid crude or oil. At the 1.0 mg/g TAN level, acidic crude oils begin to be heavily discounted in value and so are referred to as opportunity crudes.<ref>{{cite journal|first=W.|last=Qing|year=2010|title=Processing high TAN crude: Part 1|journal=Digital Refining|url=http://www.digitalrefining.com/article/1000524}}</ref> Commercial grades of naphthenic acid are most often recovered from kerosene/jet fuel and diesel fractions, where their corrosivity<ref name=":1">{{cite book |doi=10.1002/14356007.a16_361.pub2 |chapter=Metallic Soaps |title=Ullmann's Encyclopedia of Industrial Chemistry |date=2010 |last1=Nora |first1=Angelo |last2=Koenen |first2=Gunther |isbn=978-3-527-30385-4 }}</ref> and negative impact on burning qualities require their removal. Naphthenic acids are also a major contaminant in water produced during the extraction of oil from [[Athabasca oil sands]].<ref>Vincent V. Rogers, Karsten Liber, and Michael D. MacKinnon (August 2002). "Isolation and characterization of naphthenic acids from Athabasca oil sands tailings pond water". ''Chemosphere'' '''48''' (5): 519–527. {{doi|10.1016/S0045-6535(02)00133-9}}</ref><ref>Allen, E. W. (2008). "Process water treatment in Canada’s oil sands industry: I. Target pollutants and treatment objectives" (PDF). ''Journal of Environmental Engineering and Science'' '''7''' (2): 123–138. {{doi|10.1139/S07-038}}</ref> |
||
==Sources and occurrence== |
==Sources and occurrence== |
||
Naphthenic acids are |
Naphthenic acids are from petroleum distillates by [[extraction]] [[Neutralization (chemistry)|acidic neutralization]] acids . Naphthenic acid is removed from petroleum fractions not only to minimize corrosion but also to recover commercially useful products.<ref name=KO>{{cite encyclopedia|author=J. A. Brient |author2=P. J. Wessner |author3=M. N. Doyle |year=1995|title=Napthenic Acids|encyclopedia=Kirk-Othmer Encyclopedia of Chemical Technology|publisher=Wiley-VCH|location=Weinheim|doi=10.1002/0471238961.1401160802180905.a01 |chapter=Naphthenic Acids|isbn=0-471-23896-1}}</ref> oils are high in acidic compounds (up to 4%)<ref>Conrad Environmental Aquatics Technical Advisory Group (CEATAG ) (1998). ''Naphthenic Acids Background Information Discussion Report'', 65 pp.</ref> |
||
===Naphthenic acid corrosion=== |
|||
The composition varies with the crude oil composition and the conditions during refining and oxidation.<ref>{{cite journal |title = Tandem Mass Spectrometric Characterization of Commercial Naphthenic Acids and a Maya Crude Oil |author1=Walter E. Rudzinski |author2=Leon Oehlers |author3=Yi Zhang |name-list-style=amp |journal = Energy Fuels |volume = 16 |issue = 5 |pages = 1178–1185 |year = 2002 |doi = 10.1021/ef020013t}} |
The composition varies with the crude oil composition and the conditions during refining and oxidation.<ref>{{cite journal |title = Tandem Mass Spectrometric Characterization of Commercial Naphthenic Acids and a Maya Crude Oil |author1=Walter E. Rudzinski |author2=Leon Oehlers |author3=Yi Zhang |name-list-style=amp |journal = Energy Fuels |volume = 16 |issue = 5 |pages = 1178–1185 |year = 2002 |doi = 10.1021/ef020013t}} </ref> Fractions that are rich in naphthenic acids can cause corrosion damage to [[oil refinery]] equipment; the phenomenon of ''naphthenic acid corrosion'' (NAC).<ref>{{cite journal |title = Review of naphthenic acid corrosion in oil refining |author1=Slavcheva E. |author2=Shone B. |author3=Turnbull A. |journal = British Corrosion Journal |volume = 34 |issue = 2 |pages = 125–131 |year = 1999 |doi =10.1179/000705999101500761 }}</ref><ref>{{cite web |url =http://www.arabschool.org/pdf_notes/20_REFINING_OF_KUWAITS_HEAVY_CRUDE_OIL.pdf |title = Article with details concerning naphthenic acid corrosion}} {{verify source |date=September 2023 |reason=This ref was deleted Special:Diff/831906851 by a bug in VisualEditor and later restored by a bot from the original cite located at Special:Permalink/812721870 cite #5 - verify the cite is accurate and delete this template. [[User:GreenC_bot/Job_18]]}}</ref> Crude oils with a high content of naphthenic acids are often referred to as high [[total acid number]] (TAN) crude oils or high acid crude oil (HAC). Naphthenic acids are the major contaminant in water produced from the extraction of oil from [[Athabasca oil sands]] (AOS).<ref>{{cite journal | url = http://www.deadducklake.com/wp-content/uploads/2009/04/tailingsallen.pdf | author = Allen, E. W. | year = 2008 | title = Process water treatment in Canada's oil sands industry: I. Target pollutants and treatment objectives | journal = Journal of Environmental Engineering and Science | volume = 7 | issue = 2 | pages = 123–138 | doi = 10.1139/S07-038}} {{verify source |date=September 2023 |reason=This ref was deleted Special:Diff/831906851 by a bug in VisualEditor and later restored by a bot from the original cite located at Special:Permalink/812721870 cite #6 - verify the cite is accurate and delete this template. [[User:GreenC_bot/Job_18]]}}</ref> Naphthenic acids have both acute and chronic toxicity to fish and other organisms.<ref>{{cite journal | url = http://www.deadducklake.com/wp-content/uploads/2009/04/tailingsallen.pdf | author = Allen, E. W. | year = 2008 | title = Process water treatment in Canada's oil sands industry: I. Target pollutants and treatment objectives | journal = Journal of Environmental Engineering and Science | volume = 7 | issue = 2 | pages = 123–138 | doi = 10.1139/S07-038}} {{verify source |date=September 2023 |reason=This ref was deleted Special:Diff/831906851 by a bug in VisualEditor and later restored by a bot from the original cite located at Special:Permalink/812721870 cite #6 - verify the cite is accurate and delete this template. [[User:GreenC_bot/Job_18]]}}</ref> |
||
==Metal naphthenates== |
==Metal naphthenates== |
Revision as of 18:13, 11 February 2024
Example component of naphthenic acid
| |
Identifiers | |
---|---|
ECHA InfoCard | 100.014.239 |
EC Number |
|
PubChem CID
|
|
UNII | |
CompTox Dashboard (EPA)
|
|
Properties | |
Variable | |
Molar mass | Variable |
Hazards | |
GHS labelling: | |
Warning | |
H315, H317, H319, H335, H411 | |
P261, P264, P271, P272, P273, P280, P302+P352, P304+P340, P305+P351+P338, P312, P321, P332+P313, P333+P313, P337+P313, P362, P363, P391, P403+P233, P405, P501 | |
Flash point | 101 °C (214 °F; 374 K) |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Naphthenic acids (NAs) are mixtures of several cyclopentyl and cyclohexyl carboxylic acids with molecular weights of 120 to well over 700 atomic mass units. The main fractions are carboxylic acids with a carbon backbone of 9 to 20 carbons. McKee et al. claim that "naphthenic acids (NAs) are primarily cycloaliphatic carboxylic acids with 10 to 16 carbons",[1] although acids containing up to 50 carbons have been identified in heavy petroleum.[2]
Nomenclature
Naphthenic acid can refer to derivatives and isomers of naphthalene carboxylic acid. In the petrochemical industry, NA's refer to alkyl carboxylic acids found in petroleum.[3] The term naphthenic acid has roots in the somewhat archaic term "naphthene" (cycloaliphatic but non-aromatic) used to classify hydrocarbons. It was originally used to describe the complex mixture of petroleum-based acids when the analytical methods available in the early 1900s could identify only a few naphthene-type components with accuracy. Today "naphthenic" acid is used in a more generic sense to refer to all of the carboxylic acids present in petroleum, whether cyclic, acyclic, or aromatic compounds, and carboxylic acids containing heteroatoms such as N and S. Although commercial naphthenic acids often contain a majority of cycloaliphatic acids, multiple studies[4][5] have shown they also contain straight chain and branched aliphatic acids and aromatic acids; some naphthenic acids contain >50% combined aliphatic and aromatic acids.
Salts of naphthenic acids, called naphthenates, are widely used as hydrophobic sources of metal ions in diverse applications.[6]
Classification
Naphthenic acids are represented by a general formula CnH2n-zO2, where n indicates the carbon number and z specifies a homologous series. The z is equal to 0 for saturated, acyclic acids and increases to 2 in monocyclic naphthenic acids, to 4 in bicyclic naphthenic acids, to 6 in tricyclic acids, and to 8 in tetracyclic acids.[5] Crude oils with total acid number (TAN) as little as 0.5 mg KOH/g acid or petroleum fractions greater than about 1.0 mg KOH/g oil usually qualify as a high acid crude or oil. At the 1.0 mg/g TAN level, acidic crude oils begin to be heavily discounted in value and so are referred to as opportunity crudes.[7] Commercial grades of naphthenic acid are most often recovered from kerosene/jet fuel and diesel fractions, where their corrosivity[6] and negative impact on burning qualities require their removal. Naphthenic acids are also a major contaminant in water produced during the extraction of oil from Athabasca oil sands.[8][9]
Sources and occurrence
Naphthenic acids are extracted from petroleum distillates by extraction with aqueous base. Acidification of this extract acidic neutralization returns the acids free from hydrocarbons. Naphthenic acid is removed from petroleum fractions not only to minimize corrosion but also to recover commercially useful products.[10] Some crude oils are high in acidic compounds (up to 4%).[11]
Naphthenic acid corrosion
The composition varies with the crude oil composition and the conditions during refining and oxidation.[12] Fractions that are rich in naphthenic acids can cause corrosion damage to oil refinery equipment; the phenomenon of naphthenic acid corrosion (NAC).[13][14] Crude oils with a high content of naphthenic acids are often referred to as high total acid number (TAN) crude oils or high acid crude oil (HAC). Naphthenic acids are the major contaminant in water produced from the extraction of oil from Athabasca oil sands (AOS).[15] Naphthenic acids have both acute and chronic toxicity to fish and other organisms.[16]
Metal naphthenates
As the greatest current and historical usage, naphthenic acid are used to produce metal naphthenates.[10] Metal naphthenates are referred often to as "salts" of naphthenic acids, but metal naphthenates are not ionic. They are covalent, hydrophobic coordination complexes. More specifically they are metal carboxylate complexe with the formula M(naphthenate)2, or M3O(naphthenate)6 for basic oxides. Metal naphthenates are not well defined in conventional chemical sense because they are a complex mixture rather than a specific single component, structure or formula. They have diverse applications.[6][17]
The naphthenates have industrial applications including synthetic detergents, lubricants, corrosion inhibitors, fuel and lubricating oil additives, wood preservatives, insecticides, fungicides, acaricides, wetting agents, thickening agent of napalm and oil drying agents used in painting and wood surface treatment. Industrially useful naphthenates include those of aluminium, magnesium, calcium, barium, cobalt, copper, lead, manganese, nickel, vanadium, and zinc.<[6] Illustrative is the use of cobalt naphthenate for the oxidation of tetrahydronaphthalene to the hydroperoxide.[18]
The complex mixture and hydrophobic nature of naphthenic acid allows metal naphthenates to be highly soluble in organic media such as petroleum-based hydrocarbons, oftentimes much more so than single isomer carboxylates such as metal acetates and stearates. Their industrial applications exploits this property, where they are used as oil-borne detergents, lubricants, corrosion inhibitors, fuel and lubricating oil additives, wood preservatives, insecticides, fungicides, acaricides, wetting agents, oil drying agents (driers) used in oil-based paint and wood surface treatment including varnish. Industrially useful metal naphthenates include those of aluminum, barium, calcium, cobalt, copper, iron, lead, magnesium manganese, nickel, potassium, vanadium, zinc, and zirconium.[5]
Environmental impact
In their oft-cited article published in Toxicological Sciences Rogers et al. stated that "naphthenic acids are the most significant environmental contaminants resulting from petroleum extraction from oil sands deposits." They found that "under worst-case exposure conditions, acute toxicity is unlikely in wild mammals exposed to naphthenic acids in AOS tailings pond water, but repeated exposure may have adverse health effects."[19] In their 2002 article cited over 100 times, Rogers et al. reported on a solvent-based laboratory bench procedure developed to "efficiently extract naphthenic acids from bulk volumes of Athabasca oil sands tailings pond water (TPW)."[20] Naphthenic acids are present in AOS tailings pond water (TPW) at an estimated concentration of 81 mg/L, too low a level for TPW to be considered a viable source for commercial recovery.
Using Organisation for Economic Co-operation and Development [OECD] protocols for testing toxicity, McKee et al. (2014) argued that based on their studies refined NAs when consumed orally were not acutely genotoxic to mammals.[21] However, damage induced by NAs while transient in acute or discontinuous exposure, may be cumulative in repeated exposure.[22]
Safety
One oft-cited study stated that "naphthenic acids are the most significant environmental contaminants resulting from petroleum extraction from oil sands deposits." However "under worst-case exposure conditions, acute toxicity is unlikely in wild mammals exposed to naphthenic acids in AOS tailings pond water, but repeated exposure may have adverse health effects."[23] Naphthenic acids are present in Athabasca oil sands (AOS) tailings pond water (TPW) at an estimated concentration of 81 mg/L.[24]
Using Organisation for Economic Co-operation and Development (OECD) protocols for testing toxicity, McKee et al. (2014) argued that based on their studies refined NAs when consumed orally were not acutely genotoxic to mammals.[25] However, damage induced by NAs while transient in acute or discontinuous exposure, may be cumulative in repeated exposure.[23]
See also
References
- ^ Richard H. McKee; Colin M. North; Paula Podhasky; Jeffrey H. Charlap; Adam Kuhl (February 2014). "Acute and Subchronic Mammalian Toxicity of Naphthenic Acids from Oil Sands Tailings". International Journal of Toxicology. 33 (1): 347–355. doi:10.1177/1091581813504229. [verification needed]
- ^ Qian, K. and W.K. Robbins (2001). Resolution and identification of elemental compositions for more than 3000 crude acids in heavy petroleum by negative-ion microelectrospray high-field Fourier Transform ion cyclotron resonance mass spectrometry. Energy & Fuels. 15:1505-1511.
- ^ . doi:10.1016/j.fuel.2022.123775.
{{cite journal}}
: Cite journal requires|journal=
(help); Missing or empty|title=
(help) - ^ Clemente, J. S.; Fedorak, P. M. (2005). "A review of the occurrence, analyses, toxicity, and biodegradation of naphthenic acids". Chemosphere. 60 (5): 585–600. Bibcode:2005Chmsp..60..585C. doi:10.1016/j.chemosphere.2005.02.065. PMID 15963797.
- ^ a b c James Brient, Peter Wessner, Mary Doyle (1995). "Naphthenic Acid" in Kirk-Othmer, ed. Encyclopedia of Chemical Technology 4th ed. 16: 1017-1029.
- ^ a b c d Nora, Angelo; Koenen, Gunther (2010). "Metallic Soaps". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a16_361.pub2. ISBN 978-3-527-30385-4.
- ^ Qing, W. (2010). "Processing high TAN crude: Part 1". Digital Refining.
- ^ Vincent V. Rogers, Karsten Liber, and Michael D. MacKinnon (August 2002). "Isolation and characterization of naphthenic acids from Athabasca oil sands tailings pond water". Chemosphere 48 (5): 519–527. doi:10.1016/S0045-6535(02)00133-9
- ^ Allen, E. W. (2008). "Process water treatment in Canada’s oil sands industry: I. Target pollutants and treatment objectives" (PDF). Journal of Environmental Engineering and Science 7 (2): 123–138. doi:10.1139/S07-038
- ^ a b J. A. Brient; P. J. Wessner; M. N. Doyle (1995). "Naphthenic Acids". Napthenic Acids. Kirk-Othmer Encyclopedia of Chemical Technology. Weinheim: Wiley-VCH. doi:10.1002/0471238961.1401160802180905.a01. ISBN 0-471-23896-1.
- ^ Conrad Environmental Aquatics Technical Advisory Group (CEATAG ) (1998). Naphthenic Acids Background Information Discussion Report, 65 pp.
- ^ Walter E. Rudzinski; Leon Oehlers & Yi Zhang (2002). "Tandem Mass Spectrometric Characterization of Commercial Naphthenic Acids and a Maya Crude Oil". Energy Fuels. 16 (5): 1178–1185. doi:10.1021/ef020013t.
- ^ Slavcheva E.; Shone B.; Turnbull A. (1999). "Review of naphthenic acid corrosion in oil refining". British Corrosion Journal. 34 (2): 125–131. doi:10.1179/000705999101500761.
- ^ "Article with details concerning naphthenic acid corrosion" (PDF). [verification needed]
- ^ Allen, E. W. (2008). "Process water treatment in Canada's oil sands industry: I. Target pollutants and treatment objectives" (PDF). Journal of Environmental Engineering and Science. 7 (2): 123–138. doi:10.1139/S07-038. [verification needed]
- ^ Allen, E. W. (2008). "Process water treatment in Canada's oil sands industry: I. Target pollutants and treatment objectives" (PDF). Journal of Environmental Engineering and Science. 7 (2): 123–138. doi:10.1139/S07-038. [verification needed]
- ^ M. Landau. 1993. "Driers and metallic soaps", in J. Kroschwitz, ed., Kirk-Othmer Encyclopedia of Chemical Technology. New York: John Wiley & Sons. Vol. 8, pp. 432-445. doi:10.1002/0471238961.0418090512011404.a01
- ^ Knight, H. B.; Swern, Daniel (1954). "Tetralin Hydroperoxide". Organic Syntheses. 34: 90. doi:10.15227/orgsyn.034.0090.
- ^ Vincent V. Rogers; Karsten Liber & Michael D. MacKinnon (August 2002). "Isolation and characterization of naphthenic acids from Athabasca oil sands tailings pond water". Chemosphere. 48 (5): 519–527. doi:10.1016/S0045-6535(02)00133-9. [verification needed]
- ^ Vincent V. Rogers; Mark Wickstrom; Karsten Liber; Michael D. MacKinnon (2001). "Acute and Subchronic Mammalian Toxicity of Naphthenic Acids from Oil Sands Tailings". Toxicological Sciences. 66 (2): 347–355. doi:10.1093/toxsci/66.2.347. [verification needed]
- ^ Richard H. McKee; Colin M. North; Paula Podhasky; Jeffrey H. Charlap; Adam Kuhl (February 2014). "Acute and Subchronic Mammalian Toxicity of Naphthenic Acids from Oil Sands Tailings". International Journal of Toxicology. 33 (1): 347–355. doi:10.1177/1091581813504229. [verification needed]
- ^ Vincent V. Rogers; Karsten Liber & Michael D. MacKinnon (August 2002). "Isolation and characterization of naphthenic acids from Athabasca oil sands tailings pond water". Chemosphere. 48 (5): 519–527. doi:10.1016/S0045-6535(02)00133-9. [verification needed]
- ^ a b Vincent V. Rogers; Mark Wickstrom; Karsten Liber; Michael D. MacKinnon (2001). "Acute and Subchronic Mammalian Toxicity of Naphthenic Acids from Oil Sands Tailings". Toxicological Sciences. 66 (2): 347–355. doi:10.1093/toxsci/66.2.347. PMID 11896302.
- ^ Vincent V. Rogers; Karsten Liber & Michael D. MacKinnon (August 2002). "Isolation and characterization of naphthenic acids from Athabasca oil sands tailings pond water". Chemosphere. 48 (5): 519–527. Bibcode:2002Chmsp..48..519R. doi:10.1016/S0045-6535(02)00133-9. PMID 12146630.
- ^ Richard H. McKee; Colin M. North; Paula Podhasky; Jeffrey H. Charlap; Adam Kuhl (February 2014). "Acute and Subchronic Mammalian Toxicity of Naphthenic Acids from Oil Sands Tailings". International Journal of Toxicology. 33 (1): 347–355. doi:10.1177/1091581813504229. PMID 24179025. S2CID 46506662.
External links
- Article concerning refining crude oil with a high content of naphthenic acids
- Crude oils with a high content of naphthenic acids in China's refineries
- Crude oils containing naphthenic acids in the Grangemouth refinery
- Overview of naphthenic acid corrosion
- Literature survey of naphthenic acid corrosion
- Removing naphthenic acids from the crude oil
- Presentation by Nalco on naphthenic acid corrosion
- Presentation by Baker Petrolite on naphthenic acid corrosion
- Presentation by ChevronTexaco on crude oils with a high content of naphthenic acids
- Information by Seth Laboratories on Naphthenic acid corrosion
- Details regarding Kuwaitian heavy crudes and naphthenic acid corrosion
- Article regarding naphthenic acid removal
- Article regarding naphthenic acid species
- Article abstract regarding molecular origins of heavy crude oil interfacial activity mainly caused by Naphthenic acids
- Article about processes to remove Naphthenic acids
- Article about stabilisation of water-in-oil emulsions by naphthenic acids
- Spectrometric Identification of Naphthenic Acids Isolated from Crude Oil
- Hydrogen flux and naphthenic acid corrosion