Instantaneous, Dual-Frequency, Multi-GNSS Precise RTK Positioning Using Google Pixel 4 and Samsung Galaxy S20 Smartphones for Zero and Short Baselines
- PMID: 34960412
- PMCID: PMC8706396
- DOI: 10.3390/s21248318
Instantaneous, Dual-Frequency, Multi-GNSS Precise RTK Positioning Using Google Pixel 4 and Samsung Galaxy S20 Smartphones for Zero and Short Baselines
Abstract
The recent development of the smartphone Global Navigation Satellite System (GNSS) chipsets, such as Broadcom BCM47755 and Qualcomm Snapdragon 855 embedded, makes instantaneous and cm level real-time kinematic (RTK) positioning possible with Android-based smartphones. In this contribution we investigate the instantaneous single-baseline RTK performance of Samsung Galaxy S20 and Google Pixel 4 (GP4) smartphones with such chipsets, while making use of dual-frequency L1 + L5 Global Positioning System (GPS), E1 + E5a Galileo, L1 + L5 Quasi-Zenith Satellite System (QZSS) and B1 BeiDou Navigation Satellite System (BDS) code and phase observations in Dunedin, New Zealand. The effects of locating the smartphones in an upright and lying down position were evaluated, and we show that the choice of smartphone configuration can affect the positioning performance even in a zero-baseline setup. In particular, we found non-zero mean and linear trends in the double-differenced carrier-phase residuals for one of the smartphone models when lying down, which become absent when in an upright position. This implies that the two assessed smartphones have different antenna gain pattern and antenna sensitivity to interferences. Finally, we demonstrate, for the first time, a near hundred percent (98.7% to 99.9%) instantaneous RTK integer least-squares success rate for one of the smartphone models and cm level positioning precision while using short-baseline experiments with internal and external antennas, respectively.
Keywords: dual frequency; multi-GNSS; real-time kinematic (RTK); smartphone positioning.
Conflict of interest statement
The authors declare that there is no conflict of interest.
Figures
Similar articles
-
Instantaneous Best Integer Equivariant Position Estimation Using Google Pixel 4 Smartphones for Single- and Dual-Frequency, Multi-GNSS Short-Baseline RTK.Sensors (Basel). 2022 May 16;22(10):3772. doi: 10.3390/s22103772. Sensors (Basel). 2022. PMID: 35632180 Free PMC article.
-
Inherent Limitations of Smartphone GNSS Positioning and Effective Methods to Increase the Accuracy Utilizing Dual-Frequency Measurements.Sensors (Basel). 2022 Dec 15;22(24):9879. doi: 10.3390/s22249879. Sensors (Basel). 2022. PMID: 36560245 Free PMC article.
-
Relative Positioning in Remote Areas Using a GNSS Dual Frequency Smartphone.Sensors (Basel). 2021 Dec 14;21(24):8354. doi: 10.3390/s21248354. Sensors (Basel). 2021. PMID: 34960448 Free PMC article.
-
Single-Epoch, Single-Frequency Multi-GNSS L5 RTK under High-Elevation Masking.Sensors (Basel). 2019 Mar 2;19(5):1066. doi: 10.3390/s19051066. Sensors (Basel). 2019. PMID: 30832343 Free PMC article.
-
GNSS smartphones positioning: advances, challenges, opportunities, and future perspectives.Satell Navig. 2021;2(1):24. doi: 10.1186/s43020-021-00054-y. Epub 2021 Nov 16. Satell Navig. 2021. PMID: 34870240 Free PMC article. Review.
Cited by
-
An Improved Ambiguity Resolution Algorithm for Smartphone RTK Positioning.Sensors (Basel). 2023 Jun 2;23(11):5292. doi: 10.3390/s23115292. Sensors (Basel). 2023. PMID: 37300018 Free PMC article.
-
Stochastic Modeling of Smartphones GNSS Observations Using LS-VCE and Application to Samsung S20.Sensors (Basel). 2023 Mar 26;23(7):3478. doi: 10.3390/s23073478. Sensors (Basel). 2023. PMID: 37050538 Free PMC article.
-
Static Positioning under Tree Canopy Using Low-Cost GNSS Receivers and Adapted RTKLIB Software.Sensors (Basel). 2023 Mar 15;23(6):3136. doi: 10.3390/s23063136. Sensors (Basel). 2023. PMID: 36991847 Free PMC article.
-
Instantaneous Best Integer Equivariant Position Estimation Using Google Pixel 4 Smartphones for Single- and Dual-Frequency, Multi-GNSS Short-Baseline RTK.Sensors (Basel). 2022 May 16;22(10):3772. doi: 10.3390/s22103772. Sensors (Basel). 2022. PMID: 35632180 Free PMC article.
-
Evaluation of Static Autonomous GNSS Positioning Accuracy Using Single-, Dual-, and Tri-Frequency Smartphones in Forest Canopy Environments.Sensors (Basel). 2022 Feb 8;22(3):1289. doi: 10.3390/s22031289. Sensors (Basel). 2022. PMID: 35162034 Free PMC article.
References
-
- Mongredien C., Doyen J.P., Strom M., Ammann D. Centimeter level positioning for UAVs and other mass-market applications; Proceedings of the 29th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2016); Portland, OR, USA. 12–16 September 2016.
-
- Nie Z., Liu F., Gao Y. Real-time precise point positioning with a low-cost dual-frequency GNSS device. GPS Solut. 2020;24:9. doi: 10.1007/s10291-019-0922-3. - DOI
-
- Odolinski R., Teunissen P.J.G. Single-frequency, dual-GNSS versus dual-frequency, single-GNSS: A low-cost and high-grade receivers GPS-BDS RTK analysis. J. Geod. 2016;90:1255–1278. doi: 10.1007/s00190-016-0921-x. - DOI
-
- Odolinski R., Teunissen P.J.G. Best integer equivariant estimation: Performance analysis using real data collected by low-cost, single- and dual-frequency, multi-GNSS receivers for short- to long-baseline RTK positioning. J. Geod. 2020;94:91. doi: 10.1007/s00190-020-01423-2. - DOI
-
- Van Diggelen F. The Smartphone Revolution: Seven Technologies that Put GPS in Mobile Phones around the World—The How and Why of Location’s Entry into Modern Consumer Mobile Communications. GPS World 2009. [(accessed on 9 December 2021)]. Available online: https://www.gpsworld.com/wirelesssmartphone-revolution-9183/
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources