About
Experience & Education
Publications
-
Robustness evaluation of weak anion exchange chromatography method for the purity analysis of therapeutic oligonucleotides
Journal of Chromatography A
Therapeutic oligonucleotides are becoming an important class of therapeutics. Their manufacturing processes can result in the formation of impurities, particularly truncated species. To ensure the quality and safety of the product, it is crucial to evaluate the presence of these species. Liquid chromatography analysis enables such purity determination. In this context, a recently described weak anion exchange chromatography method was optimized to allow the effective separation of different…
Therapeutic oligonucleotides are becoming an important class of therapeutics. Their manufacturing processes can result in the formation of impurities, particularly truncated species. To ensure the quality and safety of the product, it is crucial to evaluate the presence of these species. Liquid chromatography analysis enables such purity determination. In this context, a recently described weak anion exchange chromatography method was optimized to allow the effective separation of different impurities. The optimization addressed the complexity and instability of the mobile phases, which contained salts and organic compounds. Adjustments were made to the mobile phase composition and gradient to meet the requirements of QC laboratories. Additionally, to ensure the method's reliability, a robustness study was conducted based on a risk assessment. Five factors were considered potential risks and were assessed experimentally on different chromatographic outputs. This led to the definition of a robust space, ensuring the method's reliability for the purity determination of oligonucleotides.
Other authorsSee publication -
Addressing common challenges of biotherapeutic protein peptide mapping using recombinant trypsin
Journal of Pharmaceutical and Biomedical Analysis
Peptide mapping is the key method for characterization of primary structure of biotherapeutic proteins. This method relies on digestion of proteins into peptides that are then analyzed for amino acid sequence and post-translational modifications. Owing to its high activity and cleavage specificity, trypsin is the protease of choice for peptide mapping. In this study, we investigated critical requirements of peptide mapping and how trypsin affects these requirements. We found that the commonly…
Peptide mapping is the key method for characterization of primary structure of biotherapeutic proteins. This method relies on digestion of proteins into peptides that are then analyzed for amino acid sequence and post-translational modifications. Owing to its high activity and cleavage specificity, trypsin is the protease of choice for peptide mapping. In this study, we investigated critical requirements of peptide mapping and how trypsin affects these requirements. We found that the commonly used MS-grade trypsins contained non-specific,
chymotryptic-like cleavage activity causing generation of semi-tryptic peptides and degradation of tryptic-specific peptides. Furthermore, MS-grade trypsins contained pre-existing autoproteolytic peptides and, moreover, additional autoproteolytic peptides were resulting from prominent autoproteolysis during digestion. In our long-standing quest to improve trypsin performance, we developed novel recombinant trypsin and evaluated whether it could address major trypsin drawbacks in peptide mapping. The study showed that the novel trypsin was free of detectable non-specific cleavage activity, had negligible level of autoproteolysis and maintained high activity over the course of digestion reaction. Taking advantage of the novel trypsin advanced properties, especially high cleavage specificity, we established the application for use of large trypsin quantities to digest
proteolytically resistant protein sites without negative side effects. We also tested trypsin/Lys-C mix comprising the novel trypsin and showed elimination of non-specific cleavages observed in the digests with the commonly used trypsins. In addition, the improved features of the novel trypsin allowed us to establish the method for accurate and efficient non-enzymatic PTM analysis in biotherapeutic proteins.Other authorsSee publication -
Multi-Attribute Monitoring of Therapeutic mRNA by Liquid Chromatography–Mass Spectrometry
LCGC Europe
Therapeutic mRNA is receiving growing interest in various therapeutic applications such as genome editing, cancer immunotherapy and prophylactic vaccines. As with other drugs, it is essential to guarantee product quality. Among the critical quality attributes of therapeutic mRNA, characterization of the capping and poly(A) tail are of the greatest importance because of their involvement in mRNA stability and in the efficiency of protein synthesis. This article presents a method for the…
Therapeutic mRNA is receiving growing interest in various therapeutic applications such as genome editing, cancer immunotherapy and prophylactic vaccines. As with other drugs, it is essential to guarantee product quality. Among the critical quality attributes of therapeutic mRNA, characterization of the capping and poly(A) tail are of the greatest importance because of their involvement in mRNA stability and in the efficiency of protein synthesis. This article presents a method for the simultaneous characterization of both attributes in a single sample preparation workflow. The method involves lipid extraction, various RNAse enzymes, purification steps and LC–MS to analyze the capping and poly(A) tailing.
Other authors -
2D-LC–MS Approaches for the Analysis of In-Process Samples and for the Characterization of mAbs in a Regulated Environment
LCGC Europe
Biologics, and in particular monoclonal antibodies (mAbs), are an important class of therapeutics, and their market share keeps growing. The production of antibodies is a complex and lengthy process. In-process characterization of the mAb would help in optimizing the production steps. Efficiency in mAb characterization can be obtained by automating analysis and reducing hands-on time. Although mass spectrometry (MS) is an essential technique for detailed characterization of biomolecules, its…
Biologics, and in particular monoclonal antibodies (mAbs), are an important class of therapeutics, and their market share keeps growing. The production of antibodies is a complex and lengthy process. In-process characterization of the mAb would help in optimizing the production steps. Efficiency in mAb characterization can be obtained by automating analysis and reducing hands-on time. Although mass spectrometry (MS) is an essential technique for detailed characterization of biomolecules, its use is limited to purified samples. However, the hyphenation of an MS system to two-dimensional liquid chromatography (2D-LC) allows for the analysis of more complex samples.The first dimension of a 2D-LC system can be used to purify the sample from its matrix or separate compounds using mobile phases that are not MS-compatible, whereas the second dimension coupled to MS can be used to desalt or separate the different variants or species obtained on the first dimension. A 2D-LC–MS system installed in a full good manufacturing practice (GMP)-compliant environment using validated software was used for the characterization of mAbs in complex mixtures at the intact and subunit levels using a Protein A affinity column with no sample preparation steps. In the second application, MS characterization of mAb subunits was made possible by digestion of the mAb online by an immobilized IdeS enzyme. The addition of a disulfide bridge reduction step online led to analyzing smaller molecules to access fine characterization.
Other authors -
A new alternative tool to analyse glycosylation in pharmaceutical proteins based on infrared spectroscopy combined with nonlinear support vector regression
Analyst
Almost 60% of commercialized pharmaceutical proteins are glycosylated. Glycosylation is considered a critical quality attribute, as it affects the stability, bioactivity and safety of proteins. Hence, the development of analytical methods to characterise the composition and structure of glycoproteins is crucial. Currently, existing methods are time-consuming, expensive, and require significant sample preparation steps, which can alter the robustness of the analyses. In this work, we suggest the…
Almost 60% of commercialized pharmaceutical proteins are glycosylated. Glycosylation is considered a critical quality attribute, as it affects the stability, bioactivity and safety of proteins. Hence, the development of analytical methods to characterise the composition and structure of glycoproteins is crucial. Currently, existing methods are time-consuming, expensive, and require significant sample preparation steps, which can alter the robustness of the analyses. In this work, we suggest the use of a fast, direct, and simple Fourier transform infrared spectroscopy (FT-IR) combined with a chemometric strategy to address this challenge. In this context, a database of FT-IR spectra of glycoproteins was built, and the glycoproteins were characterised by reference methods (MALDI-TOF, LC-ESI-QTOF and LC-FLR-MS) to estimate the mass ratio between carbohydrates and proteins and determine the composition in monosaccharides. The FT-IR spectra were processed first by Partial Least Squares Regression (PLSR), one of the most used regression algorithms in spectroscopy and secondly by Support Vector Regression (SVR). SVR has emerged in recent years and is now considered a powerful alternative to PLSR, thanks to its ability to flexibly model nonlinear relationships. The results provide clear evidence of the efficiency of the combination of FT-IR spectroscopy, and SVR modelling to characterise glycosylation in therapeutic proteins. The SVR models showed better predictive performances than the PLSR models in terms of RMSECV, RMSEP, R2CV, R2Pred and RPD. This tool offers several potential applications, such as comparing the glycosylation of a biosimilar and the original molecule, monitoring batch-to-batch homogeneity, and in-process control.
-
Development of an ICP-MS/MS approach for absolute quantification and determination of phosphodiester to phosphorothioate ratio in therapeutic oligonucleotides
Journal of Pharmaceutical and Biomedical Analysis
A new analytical method based on ICP-MS/MS is proposed for the characterization of synthetic phosphorothioate oligonucleotides. Absolute quantification of oligonucleotides is challenging, as well as the determination of phosphodiester to phosphorothioate ratio for phosphorothioate oligonucleotides. Both are considered as critical quality attributes and should be determined using robust validated methods. The method we developed was designed to be easy to apply, fast, and robust. It allows…
A new analytical method based on ICP-MS/MS is proposed for the characterization of synthetic phosphorothioate oligonucleotides. Absolute quantification of oligonucleotides is challenging, as well as the determination of phosphodiester to phosphorothioate ratio for phosphorothioate oligonucleotides. Both are considered as critical quality attributes and should be determined using robust validated methods. The method we developed was designed to be easy to apply, fast, and robust. It allows simultaneous absolute quantification of an oligonucleotide (based on the quantification of phosphorus), determination of the phosphodiester to phosphorothioate ratio (based on the quantification of phosphorus and sulfur) and optionally determination of sodium (or any other metal) as a counter ion. The performance of the method was demonstrated on O,O-diethyl thiophosphate potassium salt, a well characterized model substance that possesses similar composition to phosphorothioate oligonucleotides. Method was also tested on different synthetic phophorothioate oligonucleotides, showing excellent accuracy and precision.
Other authorsSee publication -
IL-7 receptor blockade blunts antigen-specific memory T cell responses and chronic inflammation in primates
Nature Communications
Targeting the expansion of pathogenic memory immune cells is a promising therapeutic strategy to prevent chronic autoimmune attacks. Here we investigate the therapeutic efficacy and mechanism of new anti-human IL-7Rα monoclonal antibodies (mAb) in non-human primates and show that, depending on the target epitope, a single injection of antagonistic anti-IL-7Rα mAbs induces a long-term control of skin inflammation despite repeated antigen challenges in presensitized monkeys. No modification in T…
Targeting the expansion of pathogenic memory immune cells is a promising therapeutic strategy to prevent chronic autoimmune attacks. Here we investigate the therapeutic efficacy and mechanism of new anti-human IL-7Rα monoclonal antibodies (mAb) in non-human primates and show that, depending on the target epitope, a single injection of antagonistic anti-IL-7Rα mAbs induces a long-term control of skin inflammation despite repeated antigen challenges in presensitized monkeys. No modification in T cell numbers, phenotype, function or metabolism is observed in the peripheral blood or in response to polyclonal stimulation ex vivo. However, long-term in vivo hyporesponsiveness is associated with a significant decrease in the frequency of antigen-specific T cells producing IFN-γ upon antigen restimulation ex vivo. These findings indicate that chronic antigen-specific memory T cell responses can be controlled by anti-IL-7Rα mAbs, promoting and maintaining remission in T-cell mediated chronic inflammatory diseases.
-
Orthogonal liquid chromatography–mass spectrometry methods for the comprehensive characterization of therapeutic glycoproteins, from released glycans to intact protein level
Journal of Chromatography A
Proteins are increasingly used as therapeutics. Their characterization is challenging due to their size and inherent heterogeneity notably caused by post-translational modifications, among which glycosylation is probably the most prominent. The glycosylation profile of therapeutic proteins must therefore be thoroughly analyzed. Here, we illustrate how the use of a combination of various cutting-edge LC or LC/MS(/MS) methods, and operating at different levels of analysis allows the comprehensive…
Proteins are increasingly used as therapeutics. Their characterization is challenging due to their size and inherent heterogeneity notably caused by post-translational modifications, among which glycosylation is probably the most prominent. The glycosylation profile of therapeutic proteins must therefore be thoroughly analyzed. Here, we illustrate how the use of a combination of various cutting-edge LC or LC/MS(/MS) methods, and operating at different levels of analysis allows the comprehensive characterization of both the N- and O-glycosylations of therapeutic proteins without the need for other approaches (capillary electrophoresis, MALDI-TOF). This workflow does not call for the use of highly specialized/custom hardware and software nor an extensive knowledge of glycan analysis. Most notably, we present the point of view of a contract research organization, with the constraints associated to the work in a regulated environment (GxP). Two salient points of this work are i) the use of mixed-mode chromatography as a fast and straightforward mean of profiling N-glycans sialylation as well as an orthogonal method to separate N-glycans co-eluting in the HILIC mode; and ii) the use of widepore HILIC/MS to analyze challenging N/O-glycosylation profiles at both the peptide and subunit levels. A particular attention was given to the sample preparations in terms of duration, specificity, versatility, and robustness, as well as the ease of data processing.
Other authorsSee publication -
Therapeutic Antibody Glycosylation Analysis: A Contract Research Organization Perspective in the Frame of Batch Release or Comparability Support
Methods in Molecular Biology, Volume 988 (2013) "Glycosylation Engineering of Biopharmaceuticals" Ed. Alain Beck
Glycosylation of the Fc moiety of a monoclonal antibody is a heterogeneous posttranslational process considered as a critical quality attribute of the purified drug substance due to its major impact on safety and efficacy (i.e., immunogenicity, CDC or ADCC effector functions, etc.).
Glycosylation should thus be addressed for batch-to-batch comparability and for drug substance characterization, in terms of identity and/or purity testing.
We present below a set of efficient…Glycosylation of the Fc moiety of a monoclonal antibody is a heterogeneous posttranslational process considered as a critical quality attribute of the purified drug substance due to its major impact on safety and efficacy (i.e., immunogenicity, CDC or ADCC effector functions, etc.).
Glycosylation should thus be addressed for batch-to-batch comparability and for drug substance characterization, in terms of identity and/or purity testing.
We present below a set of efficient, performing and complementary analytical tests that can be used alone or in combination, depending on the information needed and available laboratory instrumentation.
The results obtained using these techniques for “global” glycosylation profile, N-glycans profiling, monosaccharides, and sialic acids determination are presented for the Trastuzumab (Herceptin)-humanized mAb produced in CHO.
Other authorsSee publication -
Atmospheric pressure photoionization coupled to porous graphitic carbon liquid chromatography for the analysis of globotriaosylceramides. Application to Fabry disease.
J Mass Spectrom. 2006 Jan;41(1):50-8.
Globotriaosylceramides (Gb(3)) are biological compounds implicated in Fabry disease, a lysosomal storage disease due to the deficient activity of alpha-D-galactosidase A, which results in an accumulation of Gb(3) in many organs. The naturally occurring samples are composed of mixtures of several molecular species differing by the structure of the alkyl chains and the nature of the sphingoid base. Atmospheric pressure photoionization mass spectrometry (APPI-MS) proved to be an efficient method…
Globotriaosylceramides (Gb(3)) are biological compounds implicated in Fabry disease, a lysosomal storage disease due to the deficient activity of alpha-D-galactosidase A, which results in an accumulation of Gb(3) in many organs. The naturally occurring samples are composed of mixtures of several molecular species differing by the structure of the alkyl chains and the nature of the sphingoid base. Atmospheric pressure photoionization mass spectrometry (APPI-MS) proved to be an efficient method for the analysis of globotriaosylceramide molecular species, both in direct injection and by coupling with liquid chromatography (LC). In the positive ion mode, in-source fragmentations yield very precious information that can be used to determine the structure of the alkyl chains. In the negative ion mode, the chloroform solvent participates to the analyte ionization by forming an adduct with chloride ions generated in situ. Combination of LC on a Porous Graphitic Carbon stationary phase and APPI-MS allowed the detection of a great number of species from biological samples isolated from Fabry patients. This method could be an interesting analytical tool for the biochemical investigation of (sphingo) lipid metabolism.
Other authors -
Liquid chromatography on porous graphitic carbon with atmospheric pressure photoionization mass spectrometry and tandem mass spectrometry for the analysis of glycosphingolipids.
J Chromatogr A. 2006 Jun 9;1117(2):154-62
The study of several structural variations (the length, the degree of unsaturation and hydroxylation of the alkyl chains, the number and nature of osidic residues) helped understand the behaviour of neutral glycosphingolipids (GSLs) on porous graphitic carbon stationary phase (PGC). Atmospheric pressure photoionization mass spectrometry (APPI) and tandem mass spectrometry were used to perform the detection and the identification of molecular species in positive mode where [M+H](+) and…
The study of several structural variations (the length, the degree of unsaturation and hydroxylation of the alkyl chains, the number and nature of osidic residues) helped understand the behaviour of neutral glycosphingolipids (GSLs) on porous graphitic carbon stationary phase (PGC). Atmospheric pressure photoionization mass spectrometry (APPI) and tandem mass spectrometry were used to perform the detection and the identification of molecular species in positive mode where [M+H](+) and [M-H(2)O+H](+) ions provided structural information on the fatty acid and the sphingoid base. The retention of GSLs increased with the hydrocarboneous volume of their alkyl chains and with the number of osidic residues in agreement with hydrophobic properties and polar retention effect of graphite, respectively. The presence of polar groups, such as OH-group or double bond within alkyl chains, decreased their retention. The coupling of chromatography on PGC with APPI tandem mass spectrometry detection appeared a powerful technique to discriminate isobaric molecules. Isobaric solutes differing by the position of two double bonds or by the repartition of hydrocarboneous skeleton were discriminated according to their chromatographic comportment or their mass spectrum, respectively. Among isobaric molecules, only few structures differing by the nature of osidic residue were not discriminated (i.e. glucosylceramide and galactosylceramide with similar ceramide skeleton were co-eluted and no difference in mass spectra was observed).
Other authors -
Mass spectrometric analysis of the interactions between CP12, a chloroplast protein, and metal ions: a possible regulatory role within a PRK/GAPDH/CP12 complex.
Rapid Commun Mass Spectrom. 2005;19(22):3379-88.
The small chloroplast protein CP12 plays the role of a protein linker in the assembly process of a PRK/GAPDH/CP12 complex that is involved in CO2 assimilation in photosynthetic organisms. The redox state of CP12 regulates its role as a protein linker. Only the oxidized protein, with two disulfide bonds, is active in complex formation. Several observations indicating that CP12 might bind a metal ion led us to screen the binding of different metal ions on oxidized or reduced CP12 using…
The small chloroplast protein CP12 plays the role of a protein linker in the assembly process of a PRK/GAPDH/CP12 complex that is involved in CO2 assimilation in photosynthetic organisms. The redox state of CP12 regulates its role as a protein linker. Only the oxidized protein, with two disulfide bonds, is active in complex formation. Several observations indicating that CP12 might bind a metal ion led us to screen the binding of different metal ions on oxidized or reduced CP12 using non-covalent electrospray ionization mass spectrometry (ESI-MS) experiments. The oxidized protein bound specifically Cu2+ and Ni2+ (Kd of 26+/-1 microM and 11+/-1 microM, respectively); other cations such as Fe2+ and Zn2+ did not bind, while cations such as Cd2+ formed non-specific adducts to CP12. Similar results were obtained for metal ions on screening with the reduced CP12. Interestingly, the present results suggest that Cu2+ catalyzes the re-formation of the disulfide bonds of the reduced CP12, leading to recovery of the fully oxidized CP12 that is then able to bind a Cu2+ ion. Finally the high similarity between CP12 and copper chaperones from Arabidopsis thaliana, as judged by hydrophobic cluster analysis, provides additional evidence for the relevance of metal binding for the in vivo situation. The findings that CP12 is able to bind a metal ion, and that Cu2+ catalyzes the oxidation of the thiol groups of CP12, are new characteristics of this protein that may prove to be important in the regulation of the assembly process of the PRK/GAPDH/CP12 complex.
Other authors -
Structural characterization of phosphatidylcholines by atmospheric pressure photoionization mass spectrometry.
Eur J Mass Spectrom (Chichester, Eng). 2005;11(4):409-17.
The potential of atmospheric pressure photoionization was investigated for the structural analysis of phosphatidylcholine lipids (PCs). [M+H]+ ions of high abundance were obtained, along with several fragment ions. Three of these dissociation products corresponded to quite unusual fragmentation pathways but allowed the determination of both the nature and the position on the glycerol backbone (sn-1 or sn-2) of the fatty acyl chains. The loss of a methyl group from the choline head was also…
The potential of atmospheric pressure photoionization was investigated for the structural analysis of phosphatidylcholine lipids (PCs). [M+H]+ ions of high abundance were obtained, along with several fragment ions. Three of these dissociation products corresponded to quite unusual fragmentation pathways but allowed the determination of both the nature and the position on the glycerol backbone (sn-1 or sn-2) of the fatty acyl chains. The loss of a methyl group from the choline head was also observed. These results suggest a complex ionization mechanism in APPI. However, this method proved to be very powerful for the rapid structural analysis of PC species without using MS/MS experiments.
Other authors -
Characterization of hydrophobic peptides by atmospheric pressure photoionization-mass spectrometry and tandem mass spectrometry.
Anal Chem. 2003 Nov 1;75(21):5961-8.
The use of photoionization at atmospheric pressure shows great potential for the mass analysis of large apolar or hydrophobic peptides. Mass spectra that were obtained using this technique showed mainly singly charged ions. While polar peptides spectra do not produce fragment ions, others lead to B-type or C-type in-source fragmentation. These dissociation reactions, which could involve electron capture dissociation processes in the case of the C-type ions, are observed for hydrophobic…
The use of photoionization at atmospheric pressure shows great potential for the mass analysis of large apolar or hydrophobic peptides. Mass spectra that were obtained using this technique showed mainly singly charged ions. While polar peptides spectra do not produce fragment ions, others lead to B-type or C-type in-source fragmentation. These dissociation reactions, which could involve electron capture dissociation processes in the case of the C-type ions, are observed for hydrophobic peptides. Both the compatibility of this ionization mode with reversed- or normal-phase liquid chromatographic separation and its sensitivity allow liquid chromatography coupling to both mass spectrometry and tandem mass spectrometry for the analyses of hydrophobic peptide mixtures. Atmospheric pressure photoionization seems to be an interesting alternative method to study hydrophobic peptides that are not easily ionizable by more classical ionization techniques such as electrospray ionization and matrix-assisted laser desorption/ionization.
Other authors
Languages
-
Français
Native or bilingual proficiency
-
Anglais
Full professional proficiency
-
Allemand
Limited working proficiency
Other similar profiles
-
Ingrid Van Wallendael
Analyste chez QUALITY ASSISTANCE S.A.
Connect -
Joëlle Piret
HSE Officer / QC project leader @ Xpress-Biologics
Connect -
Isabelle Desmet
Connect -
Christine Hens
Manager MPL (Monograph and Pharmacopeia Leader), Analytical R&D, GSK Vaccines
Connect -
Marielle Herzog
R&D Director - Belgian Volition
Connect -
Culot Benoit
Associate Scientist chez UCB
Connect -
jean-michel Mineur
Technicien de laboratoire chez GlaxoSmithKline Biologicals
Connect -
Valérie Steenwinckel
Head of Portfolio Integration (GSK Vaccine Laboratories)
Connect -
Loïc Marbais
Bulk Production technician fermentation and extraction mosquirix vaccine chez GSK
Connect -
Thierry Ollinger
Expert Scientist Functional Immuno Assays chez Glaxosmithkline Biologicals S.A.
Connect
Explore collaborative articles
We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.
Explore More