Cloud TPU(TF 2.x)での DLRM および DCN のトレーニング


このチュートリアルでは、クリック率(CTR)予測などのタスクに使用できる DLRM と DCN v2 のランキング モデルをトレーニングする方法について説明します。DLRM または DCN v2 ランキング モデルをトレーニングするためのパラメータの設定方法については、DLRM または DCN モデルを実行するための設定をご覧ください。

モデル入力は数値特徴とカテゴリ特徴であり、出力はスカラー(クリック確率など)です。モデルは、Cloud TPU でトレーニングおよび評価できます。ディープ ランキング モデルは、メモリ消費量が多く(テーブルとルックアップの埋め込みのため)、��ィープ ネットワーク(MLP)のためにコンピューティング負荷が高くなります。TPU は両方の用途向けに設計されています。

このモデルでは、カテゴリ特徴に TPUEmbedding レイヤを使用します。 TPU 埋め込みは、高速ルックアップを使用して大きな埋め込みテーブルをサポートします。埋め込みテーブルのサイズは、TPU Pod のサイズに比例して増減します。TPU v3-8 では最大 90 GB の埋め込みテーブルを使用できます。v3-512 Pod では最大 5.6 TB、v3-2048 TPU Pod では最大 22.4 TB を使用できます。

モデルコードは TensorFlow Recommenders ライブラリにありますが、入力パイプライン、構成、トレーニング ループについては TensorFlow Model Garden をご覧ください。

目標

  • トレーニング環境を設定する
  • 合成データを使用してトレーニング ジョブを実行する
  • 出力結果を確認します。

費用

このドキュメントでは、Google Cloud の次の課金対象のコンポーネントを使用します。

  • Compute Engine
  • Cloud TPU
  • Cloud Storage

料金計算ツールを使うと、予想使用量に基づいて費用の見積もりを生成できます。 新しい Google Cloud ユーザーは無料トライアルをご利用いただける場合があります。

始める前に

このチュートリアルを開始する前に、Google Cloud プロジェクトが正しく設定されていることを確認します。

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Google Cloud project.

  4. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  5. Make sure that billing is enabled for your Google Cloud project.

  6. このチュートリアルでは、Google Cloud の課金対象となるコンポーネントを使用します。費用を見積もるには、Cloud TPU の料金ページを確認してください。不要な課金を回避するために、このチュートリアルを完了したら、作成した TPU リソースを必ずクリーンアップしてください。

リソースを設定する

このセクションでは、このチュートリアルで使用する Cloud Storage のバケット、VM、Cloud TPU の各リソースを設定する方法について説明します。

  1. Cloud Shell ウィンドウを開きます。

    Cloud Shell を開く

  2. プロジェクト ID の変数を作成します。

    export PROJECT_ID=project-id
  3. Cloud TPU を作成するプロジェクトを使用するように Google Cloud CLI を構成します。

    gcloud コマンドの詳細については、Google Cloud CLI リファレンスをご覧ください。

    gcloud config set project ${PROJECT_ID}

    このコマンドを新しい Cloud Shell VM で初めて実行すると、Authorize Cloud Shell ページが表示されます。ページの下部にある [Authorize] をクリックして、gcloud に認証情報を使用した API の呼び出しを許可します。

  4. Cloud TPU プロジェクトのサービス アカウントを作成します。

    gcloud beta services identity create --service tpu.googleapis.com --project $PROJECT_ID

    このコマンドでは、Cloud TPU サービス アカウントを次の形式で返します。

    service-PROJECT_NUMBER@cloud-tpu.iam.gserviceaccount.com
    

  5. 次のコマンドを使用して Cloud Storage バケットを作成します。ここで、--location オプションは、バケットを作成するリージョンを指定します。ゾーンとリージョンの詳細については、タイプとゾーンをご覧ください。

    gcloud storage buckets create gs://bucket-name --project=${PROJECT_ID} --location=europe-west4

    この Cloud Storage バケットには、モデルのトレーニングに使用するデータとトレーニング結果が格納されます。このチュートリアルで使用する gcloud compute tpus tpu-vm ツールは、前の手順で設定した Cloud TPU サービス アカウントのデフォルトの権限を設定します。権限の詳細な設定が必要な場合は、アクセスレベル権限をご覧ください。

    バケットのロケーションは、Compute Engine(VM)および Cloud TPU ノードと同じリージョンにする必要があります。

  6. gcloud コマンドを使用して Compute Engine VM と Cloud TPU を起動します。

    $ gcloud compute tpus tpu-vm create dlrm-dcn-tutorial \
        --zone=europe-west4-a \
        --accelerator-type=v3-8 \
        --version=tpu-vm-tf-2.17.0-se

    コマンドフラグの説明

    zone
    Cloud TPU を作成するゾーン
    accelerator-type
    アクセラレータ タイプでは、作成する Cloud TPU のバージョンとサイズを指定します。TPU のバージョンごとにサポートされているアクセラレータ タイプの詳細については、TPU のバージョンをご覧ください。
    version
    Cloud TPU ソフトウェアのバージョン
  7. SSH を使用して Compute Engine インスタンスに接続します。VM に接続すると、シェル プロンプトが username@projectname から username@vm-name に変わります。

    gcloud compute tpus tpu-vm ssh dlrm-dcn-tutorial --zone=europe-west4-a

Cloud Storage バケットの変数を設定する

次の環境変数を設定します。bucket-name を Cloud Storage バケットの名前に置き換えます。

(vm)$ export STORAGE_BUCKET=gs://bucket-name
(vm)$ export PYTHONPATH="/usr/share/tpu/models/:${PYTHONPATH}"
(vm)$ export EXPERIMENT_NAME=dlrm-exp

TPU 名の環境変数を設定します。

  (vm)$ export TPU_NAME=local
  

トレーニング アプリケーションでは、Cloud Storage でトレーニング データにアクセスできる必要があります。また、トレーニング アプリケーションは、Cloud Storage バケットを使用してトレーニング中にチェックポイントを保存します。

合成データで DLRM または DCN モデルを実行するように設定する

モデルは、さまざまなデータセットでトレーニングできます。Criteo TerabyteCriteo Kaggle の 2 つが一般的に使用されます。このチュートリアルでは、use_synthetic_data=True フラグを設定して合成データをトレーニングします。

合成データセットは、Cloud TPU の使用方法を理解し、エンドツーエンドのパフォーマンスを検証する場合にのみ役立ちます。精度の数値と保存されたモデルは有意なものではありません。

これらのデータセットをダウンロードして前処理する方法については、Criteo Terabyte および Criteo Kaggle ウェブサイトにアクセスしてください。

  1. 必要なパッケージをインストールする

    (vm)$ pip3 install tensorflow-recommenders
    (vm)$ pip3 install -r /usr/share/tpu/models/official/requirements.txt
  2. スクリプト ディレクトリに移動します。

    (vm)$ cd /usr/share/tpu/models/official/recommendation/ranking
  3. トレーニング スクリプトを実行します。これは、架空の Criteo に類似したデータセットを使用して、DLRM モデルをトレーニングします。トレーニングには約 20 分かかります。

    export EMBEDDING_DIM=32
    
    python3 train.py --mode=train_and_eval \
         --model_dir=${STORAGE_BUCKET}/model_dirs/${EXPERIMENT_NAME} --params_override="
         runtime:
             distribution_strategy: 'tpu'
         task:
             use_synthetic_data: true
             train_data:
                 input_path: '${DATA_DIR}/train/*'
                 global_batch_size: 16384
             validation_data:
                 input_path: '${DATA_DIR}/eval/*'
                 global_batch_size: 16384
             model:
                 num_dense_features: 13
                 bottom_mlp: [512,256,${EMBEDDING_DIM}]
                 embedding_dim: ${EMBEDDING_DIM}
                 top_mlp: [1024,1024,512,256,1]
                 interaction: 'dot'
                 vocab_sizes: [39884406, 39043, 17289, 7420, 20263, 3, 7120, 1543, 63,
                     38532951, 2953546, 403346, 10, 2208, 11938, 155, 4, 976, 14,
                     39979771, 25641295, 39664984, 585935, 12972, 108, 36]
         trainer:
             use_orbit: false
             validation_interval: 1000
             checkpoint_interval: 1000
             validation_steps: 500
             train_steps: 1000
             steps_per_loop: 1000
         "
    

このトレーニングは、v3-8 TPU で約 10 分間実行されます。完了すると、次のようなメッセージが表示されます。

I0621 21:32:58.519792 139675269142336 tpu_embedding_v2_utils.py:907] Done with log of TPUEmbeddingConfiguration.
I0621 21:32:58.540874 139675269142336 tpu_embedding_v2.py:389] Done initializing TPU Embedding engine.
1000/1000 [==============================] - 335s 335ms/step - auc: 0.7360 - accuracy: 0.6709 - prediction_mean: 0.4984
- label_mean: 0.4976 - loss: 0.0734 - regularization_loss: 0.0000e+00 - total_loss: 0.0734 - val_auc: 0.7403
- val_accuracy: 0.6745 - val_prediction_mean: 0.5065 - val_label_mean: 0.4976 - val_loss: 0.0749
- val_regularization_loss: 0.0000e+00 - val_total_loss: 0.0749

Model: "ranking"
_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
tpu_embedding (TPUEmbedding) multiple                  1
_________________________________________________________________
mlp (MLP)                    multiple                  154944
_________________________________________________________________
mlp_1 (MLP)                  multiple                  2131969
_________________________________________________________________
dot_interaction (DotInteract multiple                  0
_________________________________________________________________
ranking_1 (Ranking)          multiple                  0
=================================================================
Total params: 2,286,914
Trainable params: 2,286,914
Non-trainable params: 0
_________________________________________________________________
I0621 21:43:54.977140 139675269142336 train.py:177] Train history: {'auc': [0.7359596490859985],
'accuracy': [0.67094486951828], 'prediction_mean': [0.4983849823474884], 'label_mean': [0.4975697994232178],
'loss': [0.07338511198759079], 'regularization_loss': [0], 'total_loss': [0.07338511198759079],
'val_auc': [0.7402724623680115], 'val_accuracy': [0.6744520664215088], 'val_prediction_mean': [0.5064718723297119],
'val_label_mean': [0.4975748658180237], 'val_loss': [0.07486172765493393],
'val_regularization_loss': [0], 'val_total_loss': [0.07486172765493393]}

クリーンアップ

このチュートリアルで使用したリソースについて、Google Cloud アカウントに課金されないようにするには、リソースを含むプロジェクトを削除するか、プロジェクトを維持して個々のリソースを削除します。

  1. Compute Engine インスタンスとの接続を切断していない場合は切断します。

    (vm)$ exit

    プロンプトが username@projectname に変わります。これは、現在、Cloud Shell 内にいることを示しています。

  2. Cloud TPU リソースを削除します。

    $ gcloud compute tpus tpu-vm delete dlrm-dcn-tutorial \
      --zone=europe-west4-a
  3. gcloud compute tpus tpu-vm list を実行して、リソースが削除されたことを確認します。削除には数分かかることがあります。次のコマンドの出力には、このチュートリアルで作成したリソースを含めないでください。

    $ gcloud compute tpus tpu-vm list --zone=europe-west4-a
  4. gcloud CLI を使用して Cloud Storage バケットを削除します。bucket-name は、使用する Cloud Storage バケットの名前に置き換えます。

    $ gcloud storage rm gs://bucket-name --recursive

次のステップ

TensorFlow Cloud TPU のチュートリアルでは通常、サンプル データセットを使用してモデルをトレーニングします。このトレーニングの結果は推論に使用できません。モデルを推論に使用するには、一般公開されているデータセットまたは独自のデータセットでデータをトレーニングします。Cloud TPU でトレーニングされた TensorFlow モデルは通常、データセットを TFRecord 形式にする必要があります。

データセット変換ツールのサンプルを使用して、画像分類データセットを TFRecord 形式に変換できます。画像分類モデルを使用しない場合は、自分でデータセットを TFRecord 形式に変換する必要があります。詳細については、TFRecord と tf.Example をご覧ください。

ハイパーパラメータ調整

データセットでモデルのパフォーマンスを向上させるには、モデルのハイパーパラメータを調整します。す���ての TPU ��������ー����れている��デルに共通のハイパーパラメータに関する情報については、GitHub をご覧ください。モデルに固有のハイパーパラメータに関する情報については、各モデルのソースコードで確認できます。ハイパーパラメータ調整の詳細については、ハイパーパラメータ調整の概要ハイパーパラメータを調整するをご覧ください。

推論

モデルをトレーニングしたら、そのモデルを推論(予測)に使用できます。Cloud TPU 推論コンバータ ツールを使用して、Cloud TPU v5e での推論用に TensorFlow モデルを準備して最適化できます。Cloud TPU v5e での推論の詳細については、Cloud TPU v5e 推論の概要をご覧ください。