Generate steaming text content with Generative Model

This sample demonstrates how to use Generative Models to generate text in a streaming format.

Explore further

For detailed documentation that includes this code sample, see the following:

Code sample

Go

Before trying this sample, follow the Go setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Go API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import (
	"context"
	"errors"
	"fmt"
	"io"

	"cloud.google.com/go/vertexai/genai"
	"google.golang.org/api/iterator"
)

// generateContent shows how to	send a basic streaming text prompt, writing
// the response to the provided io.Writer.
func generateContent(w io.Writer, projectID, modelName string) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, projectID, "us-central1")
	if err != nil {
		return fmt.Errorf("unable to create client: %w", err)
	}
	defer client.Close()

	model := client.GenerativeModel(modelName)

	iter := model.GenerateContentStream(
		ctx,
		genai.Text("Write a story about a magic backpack."),
	)
	for {
		resp, err := iter.Next()
		if err == iterator.Done {
			return nil
		}
		if len(resp.Candidates) == 0 || len(resp.Candidates[0].Content.Parts) == 0 {
			return errors.New("empty response from model")
		}
		if err != nil {
			return err
		}
		fmt.Fprint(w, "generated response: ")
		for _, c := range resp.Candidates {
			for _, p := range c.Content.Parts {
				fmt.Fprintf(w, "%s ", p)
			}
		}
	}
}

Java

Before trying this sample, follow the Java setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Java API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.generativeai.GenerativeModel;

public class StreamingQuestionAnswer {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-google-cloud-project-id";
    String location = "us-central1";
    String modelName = "gemini-1.5-flash-001";

    streamingQuestion(projectId, location, modelName);
  }

  // Ask a simple question and get the response via streaming.
  public static void streamingQuestion(String projectId, String location, String modelName)
      throws Exception {
    // Initialize client that will be used to send requests.
    // This client only needs to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {
      GenerativeModel model = new GenerativeModel(modelName, vertexAI);

      // Stream the result.
      model.generateContentStream("Write a story about a magic backpack.")
          .stream()
          .forEach(System.out::println);

      System.out.println("Streaming complete.");
    }
  }
}

Node.js

Before trying this sample, follow the Node.js setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Node.js API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

const {VertexAI} = require('@google-cloud/vertexai');

/**
 * TODO(developer): Update these variables before running the sample.
 */
const PROJECT_ID = process.env.CAIP_PROJECT_ID;
const LOCATION = process.env.LOCATION;
const MODEL = 'gemini-1.5-flash-001';

async function generateContent() {
  // Initialize Vertex with your Cloud project and location
  const vertexAI = new VertexAI({project: PROJECT_ID, location: LOCATION});

  // Instantiate the model
  const generativeModel = vertexAI.getGenerativeModel({
    model: MODEL,
  });

  const request = {
    contents: [
      {
        role: 'user',
        parts: [
          {
            text: 'Write a story about a magic backpack.',
          },
        ],
      },
    ],
  };

  console.log(JSON.stringify(request));

  const result = await generativeModel.generateContentStream(request);
  for await (const item of result.stream) {
    console.log(item.candidates[0].content.parts[0].text);
  }
}

Python

Before trying this sample, follow the Python setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Python API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import vertexai

from vertexai.generative_models import GenerativeModel

# TODO(developer): Update Project ID
vertexai.init(project=PROJECT_ID, location="us-central1")

model = GenerativeModel("gemini-1.5-flash-002")
responses = model.generate_content(
    "Write a story about a magic backpack.", stream=True
)

for response in responses:
    print(response.text)

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser.