Abstract
Birds are bipedal animals with a center of gravity rostral to the insertion of the hindlimbs. This imposes special demands on keeping balance when moving on the ground. Recently, specializations in the lumbosacral region have been suggested to function as a sense organ of equilibrium which is involved in the control of walking. Morphological, electrophysiological, behavioral and embryological evidence for such a function is reviewed. Birds have two nearly independent kinds of locomotion and it is suggested that two different sense organs play an important role in their respective control: the vestibular organ during flight and the lumbosacral system during walking.
Similar content being viewed by others
References
Baumel JJ, Witmer LM (1993) Osteology. In: Baumel JJ (ed) Handbook of avian anatomy: nomina anatomica avium. Mass. Nuttal Ornithology Club, Cambridge, pp 45–132
Biederman-Thorson M, Thorson J (1973) Rotation-compensating reflexes independent of the labyrinth and the eye. Neuromuscular correlates in the pigeon. J Comp Physiol 83:103–122
Bilo D, Bilo A (1978) Wind stimuli control vestibular and optokinetic reflexes in the pigeon. Naturwissenschaften 65:161–162
Birinyi A, Viszokay K, Weber I, Kiehn O, Antal M (2003) Synaptic targets of commissural interneurons in the lumbar spinal cord of neonatal rats. J Comp Neurol 461:429–440
Bosco G, Poppele RE (2001) Proprioception from a spinocerebellar perspective. Physiol Rev 81:539–568
Cabot JB, Reiner A, Bogan N (1982) Avian bulbospinal pathways: anterograde and retrograde studies of cells of origin, funicular trajectories, and laminar terminations. In: Kuypers HGJM, Martin GF (eds) Progress in brain research: descending pathways to the spinal cord, vol 57. Elsevier, Amsterdam, pp 79–108
De Gennaro LD (1982) The glycogen body. In: Farner DS, King JR, Parkers KC (eds) Avian biology, vol VI. Academic, New York, pp 341–371
De Gennaro LD, Benzo CA (1978) Ultrastructural characterization of the accessory lobes of Lachi (Hofmann’s nuclei) in the nerve cord of the chick. II. Scanning and transmission electron microscopy with observations on the glycogen body. J Exp Zool 206:229–240
Delius JD, Vollrath W (1973) Rotation compensating reflexes independent of the labyrinth. Neurosensory correlates in pigeons. J Comp Physiol 83:123–134
Eide AL (1996) The axonal projections of the Hofmann nuclei in the spinal cord of the late stage chicken embryo. Anat Embryol 193:543–557
Ewald RJ (1892) Physiologische Untersuchungen ueber das Endorgan des Nervus octavus. Bergmann, Wiesbaden
Grillner S, Williams T, Lagerbäck P-Å (1984) The edge cell, a possible intraspinal mechanoreceptor. Science 223:500–503
Grillner S, Deliagina T, Ekeberg Ö, El Manira A, Hill RH, Lansner A, Orlovsky GN, Wallén P (1995) Neural networks controlling locomotion and body orientation in lamprey. Trends Neurosci 18:270–279
Grimm F, Reese M, Mittelstaedt H (1997) Extravestibuläre Rezeptoren zur Wahrnehmung der Richtung der Schwerkraft bei der Taube (Columba livia, Gmel. 1789). Verh ber Erkrg Zootiere 38:97–101
Hammar I, Bannatyne BA, Maxwell DJ, Edgley SA, Jankowska E (2004) The actions of monoamines and distribution of noradrenergic and serotoninergic contacts on different subpopulations of commissural interneurons in the cat spinal cord. Eur J Neurosci 19:1305–1316
Harrison PJ, Jankowska E, Zytnicki D (1986) Lamina VIII interneurons interposed in crossed reflex pathways in the cat. J Physiol (Lond) 371:147–166
Huber J (1936) Nerve roots and nuclear groups in the spinal cord of the pigeon. J Comp Neurol 65:43–91
Imhof G (1905) Anatomie und Entwicklungsgeschichte des Lumbalmarkes bei den Vögeln. Archiv für Mikroskopische Anatomie und Entwicklungsgeschichte 65:498–610
Jankowska E (1992) Interneuronal relay in spinal pathways from proprioceptors. Prog Neurosci 39:335–378
Jelgersma HC (1951) On the sinus lumbosacralis, spina bifida occulta, and status dysraphicus in birds. Zoologische Mededelingen uitgegeven door het Rijksmuseum van natuurlijke Historie te Leiden 31:95–106
Kölliker A (1902) Über die oberflächlichen Nervenkerne im Marke der Vögel und Reptilien. Z wiss Zool 72:126–180
Lachi P (1889) Alcune particolarita anatomiche del rigonfiamento sacrale nel midollo degli uccelli. Lobi accessori. Att Soc Tosc Sci Nat 10:268–295
Milinski T, Necker R (2001) Histochemical and immunocytochemical investigations of the marginal nuclei in the spinal cord of pigeons (Columba livia). Brain Res Bull 56:15–21
Mittelstaedt H (1964) Basic control patterns of orientational homeostasis. Symp Soc Exp Biol 18:365–385
Möller W (1989) Immunzytochemische Zelltypisierung des Glykogenkörpers der Vögel. Verh Anat Ges 82:979–980
Necker R (1992) Spinal neurons projecting to anterior or posterior cerebellum in the pigeon. Anat Embryol 185:325–334
Necker R (1997) Projections of the marginal nuclei in the spinal cord of the pigeon. J Comp Neurol 377:95–104
Necker R (1999) Specializations in the lumbosacral spinal cord of birds: morphological and behavioural evidence for a sense of equilibrium. Eur J Morphol 37:211–214
Necker R (2001) Spinocerebellar projections in the pigeon with special reference to the neck region of the body. J Comp Neurol 429:403–418
Necker R (2002) Mechanosensitivity of spinal accessory lobe neurons in the pigeon. Neurosci Lett 320:53–56
Necker R (2004) Histological and immunocytochemical characterization of neurons located in the white matter of the spinal cord of the pigeon. J Chem Neuroanat 27:109–117
Necker R (2005a) Are paragriseal cells in the avian lumbosacral spinal cord displaced ventral spinocerebellar neurons? Neurosci Lett 382:56–60
Necker R (2005b) The structure and development of avian lumbosacral specializations of the vertebral canal and the spinal cord with special reference to a possible function as a sense organ of equilibrium. Anat Embryol 210:59–74
Necker R, Janßen A, Beissenhirtz T (2000) Behavioral evidence of the role of lumbosacral anatomical specializations in pigeons in maintaining balance during terrestrial locomotion. J Comp Physiol A 186:409–412
Orlovsky GN, Deliagina TG, Grillner S (1999) Neuronal control of locomotion. From mollusc to man. Oxford University Press, Oxford, 322 pp
Reese M (1995) Ort und Art der extravestibulären Rezeptoren zur Wahrnehmung der Richtung der Schwerkraft bei der Taube (Columba livia, Gmel. 1789). Dissertation, University of München
Rosenberg J, Necker R (2002) Ultrastructural characterization of the accessory lobes of Lachi in the lumbosacral spinal cord of the pigeon with special reference to intrinsic mechanoreceptors. J Comp Neurol 447:274–285
Schroeder DM, Murray RG (1987) Specializations within the lumbosacral spinal cord of the pigeon. J Morphol 194:41–53
Singer J (1884) Zur Kenntnis der motorischen Functionen des Lendenmarks der Taube. Sitzungs-Berichte Akad Wiss Wien, Math-nat Kl 89 (III), pp 167–185
Streeter GL (1904) The structure of the spinal cord of the ostrich. Am J Anat 3:1–27
Terni T (1926) Sui nuclei marginali del midollo spinale dei Sauropsidi. Arch Ital Anat Embriol 23:610–628
Trendelenburg W (1906) Über die Bewegung der Vögel nach Durchschneidung der Rückenmarkswurzeln. Arch Physiol, pp 1–126
Watterson RL (1949) Development of the glycogen body of the chick spinal cord. I. Normal morphogenesis, vasculogenesis and anatomical relationships. J Morphol 85:337–389
Acknowledgements
Supported by the Deutsche Forschungsgemeinschaft (NE 268/5). Thanks are due to Harald Necker for checking the correctness of the English language. All treatments of the animals were in agreement with the German “Law of Animal Care” (Permission 23.8720 No. 4.12).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Necker, R. Specializations in the lumbosacral vertebral canal and spinal cord of birds: evidence of a function as a sense organ which is involved in the control of walking. J Comp Physiol A 192, 439–448 (2006). https://doi.org/10.1007/s00359-006-0105-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00359-006-0105-x