Skip to main content
Log in

Specializations in the lumbosacral vertebral canal and spinal cord of birds: evidence of a function as a sense organ which is involved in the control of walking

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Birds are bipedal animals with a center of gravity rostral to the insertion of the hindlimbs. This imposes special demands on keeping balance when moving on the ground. Recently, specializations in the lumbosacral region have been suggested to function as a sense organ of equilibrium which is involved in the control of walking. Morphological, electrophysiological, behavioral and embryological evidence for such a function is reviewed. Birds have two nearly independent kinds of locomotion and it is suggested that two different sense organs play an important role in their respective control: the vestibular organ during flight and the lumbosacral system during walking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Baumel JJ, Witmer LM (1993) Osteology. In: Baumel JJ (ed) Handbook of avian anatomy: nomina anatomica avium. Mass. Nuttal Ornithology Club, Cambridge, pp 45–132

    Google Scholar 

  • Biederman-Thorson M, Thorson J (1973) Rotation-compensating reflexes independent of the labyrinth and the eye. Neuromuscular correlates in the pigeon. J Comp Physiol 83:103–122

    Article  Google Scholar 

  • Bilo D, Bilo A (1978) Wind stimuli control vestibular and optokinetic reflexes in the pigeon. Naturwissenschaften 65:161–162

    Article  Google Scholar 

  • Birinyi A, Viszokay K, Weber I, Kiehn O, Antal M (2003) Synaptic targets of commissural interneurons in the lumbar spinal cord of neonatal rats. J Comp Neurol 461:429–440

    Article  PubMed  Google Scholar 

  • Bosco G, Poppele RE (2001) Proprioception from a spinocerebellar perspective. Physiol Rev 81:539–568

    PubMed  CAS  Google Scholar 

  • Cabot JB, Reiner A, Bogan N (1982) Avian bulbospinal pathways: anterograde and retrograde studies of cells of origin, funicular trajectories, and laminar terminations. In: Kuypers HGJM, Martin GF (eds) Progress in brain research: descending pathways to the spinal cord, vol 57. Elsevier, Amsterdam, pp 79–108

  • De Gennaro LD (1982) The glycogen body. In: Farner DS, King JR, Parkers KC (eds) Avian biology, vol VI. Academic, New York, pp 341–371

  • De Gennaro LD, Benzo CA (1978) Ultrastructural characterization of the accessory lobes of Lachi (Hofmann’s nuclei) in the nerve cord of the chick. II. Scanning and transmission electron microscopy with observations on the glycogen body. J Exp Zool 206:229–240

    Article  PubMed  Google Scholar 

  • Delius JD, Vollrath W (1973) Rotation compensating reflexes independent of the labyrinth. Neurosensory correlates in pigeons. J Comp Physiol 83:123–134

    Article  Google Scholar 

  • Eide AL (1996) The axonal projections of the Hofmann nuclei in the spinal cord of the late stage chicken embryo. Anat Embryol 193:543–557

    Article  PubMed  CAS  Google Scholar 

  • Ewald RJ (1892) Physiologische Untersuchungen ueber das Endorgan des Nervus octavus. Bergmann, Wiesbaden

    Google Scholar 

  • Grillner S, Williams T, Lagerbäck P-Å (1984) The edge cell, a possible intraspinal mechanoreceptor. Science 223:500–503

    Article  PubMed  CAS  Google Scholar 

  • Grillner S, Deliagina T, Ekeberg Ö, El Manira A, Hill RH, Lansner A, Orlovsky GN, Wallén P (1995) Neural networks controlling locomotion and body orientation in lamprey. Trends Neurosci 18:270–279

    Article  PubMed  CAS  Google Scholar 

  • Grimm F, Reese M, Mittelstaedt H (1997) Extravestibuläre Rezeptoren zur Wahrnehmung der Richtung der Schwerkraft bei der Taube (Columba livia, Gmel. 1789). Verh ber Erkrg Zootiere 38:97–101

    Google Scholar 

  • Hammar I, Bannatyne BA, Maxwell DJ, Edgley SA, Jankowska E (2004) The actions of monoamines and distribution of noradrenergic and serotoninergic contacts on different subpopulations of commissural interneurons in the cat spinal cord. Eur J Neurosci 19:1305–1316

    Article  PubMed  Google Scholar 

  • Harrison PJ, Jankowska E, Zytnicki D (1986) Lamina VIII interneurons interposed in crossed reflex pathways in the cat. J Physiol (Lond) 371:147–166

    CAS  Google Scholar 

  • Huber J (1936) Nerve roots and nuclear groups in the spinal cord of the pigeon. J Comp Neurol 65:43–91

    Article  Google Scholar 

  • Imhof G (1905) Anatomie und Entwicklungsgeschichte des Lumbalmarkes bei den Vögeln. Archiv für Mikroskopische Anatomie und Entwicklungsgeschichte 65:498–610

    Article  Google Scholar 

  • Jankowska E (1992) Interneuronal relay in spinal pathways from proprioceptors. Prog Neurosci 39:335–378

    Article  Google Scholar 

  • Jelgersma HC (1951) On the sinus lumbosacralis, spina bifida occulta, and status dysraphicus in birds. Zoologische Mededelingen uitgegeven door het Rijksmuseum van natuurlijke Historie te Leiden 31:95–106

    Google Scholar 

  • Kölliker A (1902) Über die oberflächlichen Nervenkerne im Marke der Vögel und Reptilien. Z wiss Zool 72:126–180

    Google Scholar 

  • Lachi P (1889) Alcune particolarita anatomiche del rigonfiamento sacrale nel midollo degli uccelli. Lobi accessori. Att Soc Tosc Sci Nat 10:268–295

    Google Scholar 

  • Milinski T, Necker R (2001) Histochemical and immunocytochemical investigations of the marginal nuclei in the spinal cord of pigeons (Columba livia). Brain Res Bull 56:15–21

    Article  PubMed  CAS  Google Scholar 

  • Mittelstaedt H (1964) Basic control patterns of orientational homeostasis. Symp Soc Exp Biol 18:365–385

    PubMed  CAS  Google Scholar 

  • Möller W (1989) Immunzytochemische Zelltypisierung des Glykogenkörpers der Vögel. Verh Anat Ges 82:979–980

    Google Scholar 

  • Necker R (1992) Spinal neurons projecting to anterior or posterior cerebellum in the pigeon. Anat Embryol 185:325–334

    Article  PubMed  CAS  Google Scholar 

  • Necker R (1997) Projections of the marginal nuclei in the spinal cord of the pigeon. J Comp Neurol 377:95–104

    Article  PubMed  CAS  Google Scholar 

  • Necker R (1999) Specializations in the lumbosacral spinal cord of birds: morphological and behavioural evidence for a sense of equilibrium. Eur J Morphol 37:211–214

    Article  PubMed  CAS  Google Scholar 

  • Necker R (2001) Spinocerebellar projections in the pigeon with special reference to the neck region of the body. J Comp Neurol 429:403–418

    Article  PubMed  CAS  Google Scholar 

  • Necker R (2002) Mechanosensitivity of spinal accessory lobe neurons in the pigeon. Neurosci Lett 320:53–56

    Article  PubMed  CAS  Google Scholar 

  • Necker R (2004) Histological and immunocytochemical characterization of neurons located in the white matter of the spinal cord of the pigeon. J Chem Neuroanat 27:109–117

    Article  PubMed  CAS  Google Scholar 

  • Necker R (2005a) Are paragriseal cells in the avian lumbosacral spinal cord displaced ventral spinocerebellar neurons? Neurosci Lett 382:56–60

    Article  CAS  Google Scholar 

  • Necker R (2005b) The structure and development of avian lumbosacral specializations of the vertebral canal and the spinal cord with special reference to a possible function as a sense organ of equilibrium. Anat Embryol 210:59–74

    Article  CAS  Google Scholar 

  • Necker R, Janßen A, Beissenhirtz T (2000) Behavioral evidence of the role of lumbosacral anatomical specializations in pigeons in maintaining balance during terrestrial locomotion. J Comp Physiol A 186:409–412

    Article  PubMed  CAS  Google Scholar 

  • Orlovsky GN, Deliagina TG, Grillner S (1999) Neuronal control of locomotion. From mollusc to man. Oxford University Press, Oxford, 322 pp

    Google Scholar 

  • Reese M (1995) Ort und Art der extravestibulären Rezeptoren zur Wahrnehmung der Richtung der Schwerkraft bei der Taube (Columba livia, Gmel. 1789). Dissertation, University of München

  • Rosenberg J, Necker R (2002) Ultrastructural characterization of the accessory lobes of Lachi in the lumbosacral spinal cord of the pigeon with special reference to intrinsic mechanoreceptors. J Comp Neurol 447:274–285

    Article  PubMed  Google Scholar 

  • Schroeder DM, Murray RG (1987) Specializations within the lumbosacral spinal cord of the pigeon. J Morphol 194:41–53

    Article  Google Scholar 

  • Singer J (1884) Zur Kenntnis der motorischen Functionen des Lendenmarks der Taube. Sitzungs-Berichte Akad Wiss Wien, Math-nat Kl 89 (III), pp 167–185

  • Streeter GL (1904) The structure of the spinal cord of the ostrich. Am J Anat 3:1–27

    Article  Google Scholar 

  • Terni T (1926) Sui nuclei marginali del midollo spinale dei Sauropsidi. Arch Ital Anat Embriol 23:610–628

    Google Scholar 

  • Trendelenburg W (1906) Über die Bewegung der Vögel nach Durchschneidung der Rückenmarkswurzeln. Arch Physiol, pp 1–126

  • Watterson RL (1949) Development of the glycogen body of the chick spinal cord. I. Normal morphogenesis, vasculogenesis and anatomical relationships. J Morphol 85:337–389

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by the Deutsche Forschungsgemeinschaft (NE 268/5). Thanks are due to Harald Necker for checking the correctness of the English language. All treatments of the animals were in agreement with the German “Law of Animal Care” (Permission 23.8720 No. 4.12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhold Necker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Necker, R. Specializations in the lumbosacral vertebral canal and spinal cord of birds: evidence of a function as a sense organ which is involved in the control of walking. J Comp Physiol A 192, 439–448 (2006). https://doi.org/10.1007/s00359-006-0105-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-006-0105-x

Keywords

Navigation