Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The community of the self

Abstract

Good health, which reflects the harmonious integration of molecules, cells, tissues and organs, is dynamically stable: when displaced by disease, compensation and correction are common, even without medical care. Physiology and computational biology now suggest that healthy dynamic stability arises through the combination of specific feedback mechanisms and spontaneous properties of interconnected networks. Today's physicians are already testing to 'see if the network is right'; tomorrow's physicians may well use therapies to 'make the network right'.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The concept of homeostasis.
Figure 2: Interbeat variability in health, ageing and disease.

Similar content being viewed by others

References

  1. Chambers, N. K. & Buchman, T. G. Shock at the millennium. I. Walter B. Cannon and Alfred Blalock. Shock 13, 497–504 (2000).

    Article  CAS  Google Scholar 

  2. Chambers, N. K. & Buchman, T. G. Shock at the millennium II. Walter B. Cannon and Lawrence J. Henderson. Shock 16, 278–284 (2001).

    Article  CAS  Google Scholar 

  3. Wolkenhauer, O. Systems biology: the reincarnation of systems theory applied in biology? Brief Bioinform. 2, 258–270 (2001).

    Article  CAS  Google Scholar 

  4. Kauffman, S. A. The Origins of Order: Self-Organization and Selection in Evolution (Oxford Univ. Press, Oxford, 1993).

    Google Scholar 

  5. Chauvet, G. A. Hierarchical functional organization of formal biological systems: a dynamical approach. I. The increase of complexity by self-association increases the domain of stability of a biological system. Phil. Trans. R. Soc. Lond. B 339, 425–444 (1993).

    Article  CAS  Google Scholar 

  6. Kitano, H. in Foundations of Systems Biology (ed. Kitano, H.) 1–36 (MIT Press, Cambridge, MA, 2001).

    Book  Google Scholar 

  7. Kitano, H. Systems biology: a brief overview. Science 295, 1662–1664 (2002).

    Article  ADS  CAS  Google Scholar 

  8. Hartl, F. U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002).

    Article  ADS  CAS  Google Scholar 

  9. Levy, B. D., Clish, C. B., Schmidt, B., Gronert, K. & Serhan, C. Lipid mediator class switching during acute inflammation: signals in resolution. Nature Immunol. 2, 612–619 (2001).

    Article  CAS  Google Scholar 

  10. Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–305 (2002).

    Article  ADS  CAS  Google Scholar 

  11. DeMeester, S. L., Buchman, T. G. & Cobb, J. P. The heat shock paradox: does NF-κB determine cell fate? FASEB J. 15, 270–274 (2001).

    Article  CAS  Google Scholar 

  12. Bernik, T. R. et al. Pharmacological stimulation of the anti-inflammatory pathway. J. Exp. Med. 195, 781–788 (2002).

    Article  CAS  Google Scholar 

  13. Blalock, J. E. Harnessing a neural-immune circuit to control inflammation and shock. J. Exp. Med. 195, F25–F28 (2002).

    Article  CAS  Google Scholar 

  14. Weiss, Y. G., Maloyan, A., Tazelaar, J., Raj N. & Deutschman, C. S. Adenoviral transfer of HSP-70 into pulmonary epithelium ameliorates experimental acute respiratory distress syndrome. J. Clin. Invest. 110, 801–806 (2002).

    Article  CAS  Google Scholar 

  15. Slutsky, A. S. Hot new therapy for sepsis and the acute respiratory distress syndrome. J. Clin. Invest. 110, 737–739 (2002).

    Article  CAS  Google Scholar 

  16. Marshall, J. C. Inflammation, coagulopathy, and the pathogenesis of multiple organ dysfunction syndrome. Crit. Care Med. 29 (Suppl.), S99–S106 (2001).

    Article  CAS  Google Scholar 

  17. Seely, A. J. & Christou, N. V. Multiple organ dysfunction syndrome: exploring the paradigm of complex nonlinear systems. Crit. Care Med. 28, 2193–2200 (2000).

    Article  CAS  Google Scholar 

  18. Pincus, S. M. Greater signal regularity may indicate increased system isolation. Math. Biosci. 122, 161–181 (1994).

    Article  CAS  Google Scholar 

  19. Godin, P. J. & Buchman, T. G. Uncoupling of biological oscillators: a complementary hypothesis concerning the pathogenesis of multiple organ dysfunction syndrome. Crit. Care Med. 24, 1107–1116 (1996).

    Article  CAS  Google Scholar 

  20. Godin, P. J. et al. Experimental human endotoxemia increases cardiac regularity: results from a prospective, randomized, crossover trial. Crit. Care Med. 24, 1117–1124 (1996).

    Article  CAS  Google Scholar 

  21. Ellenby, M. S. et al. Uncoupling and recoupling of autonomic regulation of the heart beat in pediatric septic shock. Shock 16, 274–277 (2001).

    Article  CAS  Google Scholar 

  22. Goldstein, B., Toweill, D., Lai, S., Sonnenthal, K. & Kimberly, B. Uncoupling of the autonomic and cardiovascular systems in acute brain injury. Am. J. Physiol. 275, R1287–R1292 (1998).

    CAS  PubMed  Google Scholar 

  23. Goldberger, A. L. et al. Fractal dynamics in physiology: alterations with disease and aging. Proc. Natl Acad. Sci. USA 99, 2466–2472 (2002).

    Article  ADS  Google Scholar 

  24. Pincus, S. M. Approximate entropy as a measure of system complexity. Proc. Natl Acad. Sci. USA 88, 2297–2301 (1991).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  25. Pincus, S. M. et al. Older males secrete luteinizing hormone (LH) and testosterone more irregularly, and jointly more asynchronously, than younger males. Proc. Natl Acad. Sci. USA 93, 14100–14105 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Schäfer, C., Rosenblum M. G., Abel, H.-H & Kurths, J. Synchronization in human cardiorespiratory system. Phys. Rev. E 60, 657–870 (1999).

    Article  ADS  Google Scholar 

  27. Ito, J. & Kaneko, K. Spontaneous structure formation in a network of chaotic units with variable connection strengths. Phys. Rev. Lett. 88, 028701-1–028701-4 (2002).

    ADS  Google Scholar 

  28. Noble, D. The rise of computational biology. Nature Rev. Mol. Cell Biol. 3, 460–462 (2002).

    Article  CAS  Google Scholar 

  29. Noble, D. Modeling the heart—from genes to cells to the whole organ. Science 295, 1678–1682 (2002).

    Article  ADS  CAS  Google Scholar 

  30. Fink, C. C. et al. An image-based model of calcium waves in differentiated neuroblastoma cells. Biophys. J. 79, 163–183 (2000).

    Article  ADS  CAS  Google Scholar 

  31. Collins, J. J., Chow, C. C., Imhoff, T. T. Aperiodic stochastic resonance in excitable systems. Phys. Rev. E 52, R3321–R3324 (1995).

    Article  ADS  CAS  Google Scholar 

  32. Suki, B. et al. Life-support system benefits from noise. Nature 393, 127–128 (1998).

    Article  ADS  CAS  Google Scholar 

  33. Neiman, A., Schimansky-Geier, L., Moss, F., Shulgin, B. & Collins, J. J. Synchronization of noisy systems by stochastic signals. Phys Rev E 60, 284–292 (1999).

    Article  ADS  CAS  Google Scholar 

  34. Gong, Y., Matthews, N. & Qian, N. Model for stochastic-resonance-type behavior in sensory perception. Phys. Rev. E 65, 031904-1–031904-5 (2002).

    Article  ADS  Google Scholar 

  35. Lipsitz, L. A. & Goldberger, A. L. Loss of 'complexity' and aging. Potential applications of fractals and chaos theory to senescence. J. Am. Med. Assoc. 267, 1806–1809 (1992).

    Article  CAS  Google Scholar 

  36. Schafer, C., Rosenblum, M. G., Kurths, J. & Abel, H. H. Heartbeat synchronized with ventilation. Nature 392, 239–240 (1998).

    Article  ADS  CAS  Google Scholar 

  37. Veldhuis, J. D., Iranmanesh, A., Mulligan, T. & Pincus, S. M. Disruption of the young-adult synchrony between luteinizing hormone release and oscillations in follicle-stimulating hormone, prolactin, and nocturnal penile tumescence (NPT) in healthy older men. J. Clin. Endocrinol. Metab. 84, 3498–3505 (1999).

    CAS  PubMed  Google Scholar 

  38. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. The large-scale organization of metabolic networks. Nature 407, 651–654 (2000).

    Article  ADS  CAS  Google Scholar 

  39. Albert, R., Jeong, H. & Barabasi, A. L. Error and attack tolerance of complex networks. Nature 406, 378–382 (2000).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Work in the author's laboratory is supported by the National Institute of General Medical Sciences and the National Institute of Nursing Research. T.G.B. thanks the following colleagues for their comments during preparation and review of this article: N. Chambers, P. Cobb, J. Collins, W. Fontana, B. Goldstein, K. Kaneko, H. Kitano, D. Noble, S. Pincus and K. Tracey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy G. Buchman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchman, T. The community of the self. Nature 420, 246–251 (2002). https://doi.org/10.1038/nature01260

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01260

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing