Abstract
The influence of climatically significant regional sources of NOx (=NO + NO2), CO, and biogenic volatile organic compounds (VOCs) on the photochemical generation of surface ozone (O3) in the lower troposphere over Europe and Siberia is studied. The sensitivity of the O3 field to the total emissions of ozone precursors is calculated using a global 3D chemical transport model (GEOS-Chem) based on the 2007–2012 databases for anthropogenic (EDGAR) and biogenic (MEGAN, GFED) emissions. The amount of photochemical ozone generated during the summer months is in good correlation with the air-mass age determined from the ratio between \({\text{N}}{{{\text{O}}}_{x}}\) and (total reactive nitrogen) \({\text{N}}{{{\text{O}}}_{y}},\) when the mean contribution of regional sources is \({\Delta\text{}}{{{\text{O}}}_{{\text{3}}}}\) ~ 10–15 ppb, which is 20–30% of its background concentration in the middle latitudes (\({{{\text{O}}}_{{\text{3}}}}\) ~ 35–45 ppb). The quantitative estimates of the ozone production efficiency \({{{\Delta\text{}}{{{\text{O}}}_{{\text{3}}}}} \mathord{\left/ {\vphantom {{{\Delta\text{}}{{{\text{O}}}_{{\text{3}}}}} \Delta }} \right. \kern-0em} \Delta }{\text{(N}}{{{\text{O}}}_{y}} - {\text{N}}{{{\text{O}}}_{x}}{\text{)}}\) (\({\text{N}}{{{\text{O}}}_{y}}\) is the total reactive nitrogen) for the summer months of the indicated period (~10–30 mol O3/mol NOx) are in good agreement with the theory of photochemical ozone generation under the conditions of slightly polluted air.
Similar content being viewed by others
REFERENCES
O. Wild and H. Akimoto, “Intercontinental transport of ozone and its precursors in a three-dimensional CTM,” J. Geophys. Res. 106, 27729–27744 (2001).
O. Wild, P. Pochanart, and H. Akimoto, “Trans-Eurasian transport of ozone and its precursors,” J. Geophys. Res. 109, D11302 (2004). doi 10.1029/2003JD004501
A. V. Vivchar, K. B. Moiseenko, R. A. Shumskii, and A. I. Skorokhod, “Identifying anthropogenic sources of nitrogen oxide emissions from calculations of Lagrangian trajectories and the observational data from a tall tower in Siberia during the spring–summer period of 2007,” Izv., Atmos. Ocean. Phys. 45 (3), 302–3313 (2009).
X. Chi, J. Winderlich, J. -C. Mayer, A. V. Panov, M. Heimann, W. Birmili, J. Heintzenberg, Y. Cheng, and M. O. Andreae, “Long-term measurements of aerosol and carbon monoxide at the ZOTTO tall tower to characterize polluted and pristine air in the Siberian taiga,” Atmos. Chem. Phys. 13, 12271–12298 (2013).
X. Li, J. Liu, D. L. Mauzerall, L. K. Emmons, S. Walters, L. W. Horowitz, and S. Tao, “Effects of trans-Eurasian transport of air pollutants on surface ozone concentrations over Western China,” J. Geophys. Res.: Atmos. 119, 12338–12354 (2014). doi 10.1002/ 2014JD021936
J. Liu, J. A. Logan, D. B. A. Jones, N. J. Livesey, I. Megretskaia, C. Carouge, and P. Nedelec, “Analysis of CO in the tropical troposphere using Aura satellite data and the GEOS-Chem model: Insights into transport characteristics of the GEOS meteorological products,” Atmos. Chem. Phys. 10, 12207–12232 (2010).
D. D. Parrish, E. J. Dunlea, E. L. Atlas, S. Schauffler, S. Donnelly, V. Stroud, A. H. Goldstein, D. B. Millet, M. McKay, D. A. Jaffe, H. U. Price, P. G. Hess, F. Flocke, and J. M. Roberts, “Changes in the photochemical environment of the temperate North Pacific troposphere in response to increased Asian emissions,” J. Geophys. Res. 109, D23S18 (2004). doi 10.1029/ 2004JD004978
Q. Li, D. J. Jacob, J. W. Munger, R. M. Yantosca, and D. D. Parrish, “Export of NOy from the North American boundary layer: Reconciling aircraft observations and global model budgets,” J. Geophys. Res. 109 (D2) (2004). doi 10.1029/2003jd004086
A. Stohl, S. Eckhardt, C. Forster, P. James, and N. Spichtinger, “On the pathways and timescales of intercontinental air pollution transport,” J. Geophys. Res. 107 (D23) 4684 (2002). doi 10.1029/2001JD001396
M. Auvray and I. Bey, “Long-range transport to Europe: Seasonal variations and implications for the European ozone budget,” J. Geophys. Res. 110, D11303 (2005). doi 10.1029/2004JD005503
K. E. Christian, W. H. Brune, and J. Mao, “Global sensitivity analysis of the GEOS-Chem chemical transport model: Ozone and hydrogen oxides during ARCTAS (2008),” Atmos. Chem. Phys. Discuss. (2016). doi 10.5194/acp-2016-863
S. Wu, B. N. Duncan, D. J. Jacob, A. M. Fiore, and O. Wild, “Chemical Nonlinearities in Relating Intercontinental Ozone Pollution To Anthropogenic Emissions,” Geophys. Res. Lett. 36, L05806 (2009). doi 10.1029/2008GL036607
P. Pochanart, H. Akimoto, Y. Kajii, V. M. Potemkin, and T. V. Khodzher, “Regional background ozone and carbon monoxide variations in remote Siberia/East Asia,” J. Geophys. Res. 108 (D1), 4028 (2003).
Yu. A. Shtabkin, K. B. Moiseenko, A. I. Skorokhod, A. V. Vasileva, and M. Heimann, “Sources of and variations in tropospheric CO in Central Siberia: Numerical experiments and observations at the Zotino tall tower observatory,” Izv. Atmos. Ocean. Phys. 52 (1), 45–56 (2016).
Yu. A. Shtabkin and K. B. Moiseenko, “Seasonal variations in surface concentrations of CO and ozone in Central Siberia: Observations and numerical simulation,” in Proceedings of the XIV Conference of Young Scientists “Interaction of Fields and Radiation with Matter”, September 14–18, 2015 (Irkutsk, 2016), pp. 352–354.
A. Roiger, H. Schlager, A. Schafler, H. Huntrieser, M. Scheibe, H. Aufmhoff, O. R. Cooper, H. Sodemann, A. Stohl, J. Burkhart, M. Lazzara, C. Schiller, K. S. Law, and F. Arnold, “In-situ observation of Asian pollution transported into the Arctic lowermost stratosphere,” Atmos. Chem. Phys. 11, 10975–10994 (2011). doi 10.5194/acp-11-10975-2011
A. V. Vasileva, K. B. Moiseenko, J.-C. Mayer, N. Jurgens, A. Panov, M. Heimann, and M. O. Andreae, “Assessment of the regional atmospheric impact of wildfire emissions based on CO observations at the ZOTTO tall tower station in Central Siberia,” J. Geophys. Res. 116, D07301 (2011). doi 10.1029/2010JD014571
S. Sillman, “The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments,” Atmos. Environ. 33 (12), 1821–1845 (1999).
T. Pierce, C. Geron, L. Bender, et al., “Influence of increased isoprene emissions on regional ozone modeling,” J. Geophys. Res. 103, 25611–25629 (1998).
S. Sillman, “Tropospheric ozone and photochemical smog,” in Treatise on Geochemistry, Vol. 9: Environmental Geochemistry (Elsevier, 2003), Chap. 11, pp. 407–431.
S. C. Liu, M. Trainer, F. C. Fehsenfeld, D. D. Parrish, E. J. Williams, D. W. Fahey, G. Hubler, and P. C. Murphy, “Ozone production in the rural troposphere and the implications for regional and global ozone distributions,” J. Geophys. Res. 92 (D4) 4191–4207 (1987). doi 10.1029/JD092iD04p04191
A. Guenther, C. N. Hewitt, D. Erickson, R. Fall, C. Geron, T. Graedel, P. Harley, L. Klinger, M. Lerdau, W. A. McKay, T. Pierce, B. Scholes, R. Steinbrecher, R. Tallamraju, J. Taylor, and P. Zimmermann, “A global model of natural volatile organic compound emissions,” J. Geophys. Res. 100, 8873–8892 (1995).
E. V. Berezina, K. B. Moiseenko, A. I. Skorokhod, N. F. Elansky, and I. B. Belikov, “Aromatic volatile organic compounds and their role in ground-level ozone formation in Russia,” Dokl. Earth Sci. 474 (1), 599–603 (2017).
P. S. Monks, “Gas-phase radical chemistry in the troposphere,” Chem. Soc. Rev. 34 (5), 376–395 (2005).
Atmospheric Composition over Northern Eurasia: TROICA Experiments, Ed. by N. F. Elansky (Agrospas, Moscow, 2009) [in Russian].
N. V. Pankratova, N. F. Elansky, I. B. Belikov, O. V. Lavrova,A. I. Skorokhod, and R. A. Shumsky, “Ozone and nitric oxides in the surface air over Northern Eurasia according to observational data obtained in TROICA experiments,” Izv., Atmos. Ocean. Phys. 47 (3), 313–328 (2011).
M. Yu. Arshinov, B. D. Belan, D. K. Davydov, D. E. Savkin, T. K. Sklyadneva, G. N. Tolmachev, and A. V. Fofonov, “Mezomasshtabnye razlichiya v kontsentratsii ozona v prizemnom sloe vozdukha v Tomskom regione (2010-2012 gg.),” Tr. Inst. Obshch. Fiz. im. A. M. Prokhorova 71, 106–117 (2015).
P. S. Monks, “A review of the observations and origins of the spring ozone maximum,” Atmos. Environ. 34 (21), 3545–3561 (2000).
S. Sillman and D. He, “Some theoretical results concerning O3–NOx–VOC chemistry and NOx–VOC indicators,” J. Geophys. Res. 107 (D22), 4629 (2002). doi 10.1029/2001JD001123
W. P. L. Carter, “Development of ozone reactivity scales for volatile organic compounds,” J. Air Waste Manage. Assoc. 44, 881–899 (1994).
R. Atkinson, “Atmospheric chemistry of VOCs and NOx,” Atmos. Environ. 34, 2063–2101 (2000).
S. Sillman, J. A. Logan, and S. C. Wofsy, “The sensitivity of ozone to nitrogen oxides and hydrocarbons in regional ozone episodes,” J. Geophys. Res. 95, 1837–1851 (1990).
M. Trainer, “Correlation of ozone with NOy in photochemically aged air,” J. Geophys. Res. 98 (D2), 2917–2925 (1993). doi 10.1029/92JD01910
L. I. Kleinman, P. H. Daum, Y. Lee, L. J. Nunnermacker, S. R. Springston, J. Weinstein-Lloyd, and J. Rudolph, “Ozone production efficiency in an urban area,” J. Geophys. Res. 107 (D23), 4733 (2002).
F. J. Dentener and P. J. Crutzen, “Reaction of N2O5 on tropospheric aerosols: impact on the global distributions of NOx, O3, and OH,” J. Geophys. Res. 98, 7149–7163 (1993).
A. von Engeln and J. Teixeira, “A planetary boundary layer height climatology derived from ECMWF reanalysis data,” J. Clim. 26, 6575–6590 (2013).
I. Bey, D. J. Jacob, R. M. Yantosca, J. A. Logan, B. D. Field, A. M. Fiore, Q. B. Li, H. G. Y. Liu, L. J. Mickley, and M. G. Schultz, “Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation,” J. Geophys. Res. 106, 23073–23095 (2001). doi 10.1029/2001JD000807
L. Zhang, D. J. Jacob, N. V. Downey, D. A. Wood, D. Blewitt, C. C. Carouge, A. van Donkelaar, D. B. A. Jones, L. T. Murray, and Y. Wang, “Improved estimate of the policy-relevant background ozone in the United States using the GEOS-Chem global model with 1/2° × 2/3° horizontal resolution over North America,” Atmos. Environ. 45 (37), 6769–6776 (2011).
S.-J. Lin and R. B. Rood, “Multidimensional flux form semi-Lagrangian transport schemes,” Mon. Weather Rev. 124, 2046–2070 (1996).
J.-T. Lin, D. Youn, X. -Z. Liang, and D. J. Wuebbles, “Global model simulation of summertime U.S. ozone diurnal cycle and its sensitivity to PBL mixing, spatial resolution, and emissions,” Atmos. Environ. 42 (36), 8470–8483 (2008).
P. Eller, K. Singh, A. Sandu, K. Bowman, D. K. Henze, and M. Lee, “Implementation and evaluation of an array of chemical solvers in a global chemical transport model,” Geosci. Model Dev. 2, 185–207 (2009).
O. Wild, X. Zhu, and M. J. Prather, “Fast-J: accurate simulation of in- and below-cloud photolysis in tropospheric chemical models,” J. Atmos. Chem. 37, 245–282 (2000).
W. Trivitayanurak, P. Adams, D. Spracklen, and K. Carslaw, “Tropospheric aerosol microphysics simulation with assimilated meteorology: Model description and intermodel comparison,” Atmos. Chem. Phys. 8, 3149–3168 (2008).
J. G. J. Olivier, J. A. Van Aardenne, F. Dentener, V. Pagliari, L. N. Ganzeveld, and J. A. H. W. Peters, “Recent trends in global greenhouse gas emissions: Regional trends 1970–2000 and spatial distribution of key sources in 2000,” Environ. Sci. 2, 81–99 (2005). doi doi 10.1080/15693430500400345
A. B. Guenther, X. Jiang, C. L. Heald, T. Sakulyanontvittaya, T. Duhl, L. K. Emmons, and X. Wang, “The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions,” Geosci. Model Dev. 5, 1471–1492 (2012). doi 10.5194/gmd-5-1471-2012
G. R. van der Werf, J. T. Randerson, L. Giglio, G. J. Collatz, M. Mu, P. S. Kasibhatla, D. C. Morton, R. S. DeFries, Y. Jin, and T. T. van Leeuwen, “Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009),” Atmos. Chem. Phys. 10, 11707–11735 (2010).
C. S. Potter and S. A. Klooster, “Global model estimates of carbon and nitrogen storage in litter and soil pools: Response to change in vegetation quality and biomass allocation,” Tellus B 49 (1), 1–17 (1997).
A. V. Vivchar, K. B. Moiseenko, and N. V. Pankratova, “Estimates of carbon monoxide emissions from wildfires in Northern Eurasia for air quality assessment and climate modeling,” Izv., Atmos. Ocean. Phys. 46 (3), 281–293 (2010).
ACKNOWLEDGMENTS
This work was supported by the Russian Scientific Fund (project no. 14-47-00049).
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated by B. Dribinskaya
Rights and permissions
About this article
Cite this article
Moiseenko, K.B., Shtabkin, Y.A., Berezina, E.V. et al. Regional Photochemical Surface-Ozone Sources in Europe and Western Siberia. Izv. Atmos. Ocean. Phys. 54, 545–557 (2018). https://doi.org/10.1134/S0001433818060105
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0001433818060105