Arithmetic function

(Redirected from Arithmetic functions)

In number theory, an arithmetic, arithmetical, or number-theoretic function[1][2] is generally any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers.[3][4][5] Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n".[6] There is a larger class of number-theoretic functions that do not fit this definition, for example, the prime-counting functions. This article provides links to functions of both classes.

An example of an arithmetic function is the divisor function whose value at a positive integer n is equal to the number of divisors of n.

Arithmetic functions are often extremely irregular (see table), but some of them have series expansions in terms of Ramanujan's sum.

Multiplicative and additive functions

edit

An arithmetic function a is

Two whole numbers m and n are called coprime if their greatest common divisor is 1, that is, if there is no prime number that divides both of them.

Then an arithmetic function a is

  • additive if a(mn) = a(m) + a(n) for all coprime natural numbers m and n;
  • multiplicative if a(mn) = a(m)a(n) for all coprime natural numbers m and n.

Notation

edit

In this article,   and   mean that the sum or product is over all prime numbers:   and   Similarly,   and   mean that the sum or product is over all prime powers with strictly positive exponent (so k = 0 is not included):  

The notations   and   mean that the sum or product is over all positive divisors of n, including 1 and n. For example, if n = 12, then  

The notations can be combined:   and   mean that the sum or product is over all prime divisors of n. For example, if n = 18, then   and similarly   and   mean that the sum or product is over all prime powers dividing n. For example, if n = 24, then  

Ω(n), ω(n), νp(n) – prime power decomposition

edit

The fundamental theorem of arithmetic states that any positive integer n can be represented uniquely as a product of powers of primes:   where p1 < p2 < ... < pk are primes and the aj are positive integers. (1 is given by the empty product.)

It is often convenient to write this as an infinite product over all the primes, where all but a finite number have a zero exponent. Define the p-adic valuation νp(n) to be the exponent of the highest power of the prime p that divides n. That is, if p is one of the pi then νp(n) = ai, otherwise it is zero. Then  

In terms of the above the prime omega functions ω and Ω are defined by

ω(n) = k,
Ω(n) = a1 + a2 + ... + ak.

To avoid repetition, whenever possible formulas for the functions listed in this article are given in terms of n and the corresponding pi, ai, ω, and Ω.

Multiplicative functions

edit

σk(n), τ(n), d(n) – divisor sums

edit

σk(n) is the sum of the kth powers of the positive divisors of n, including 1 and n, where k is a complex number.

σ1(n), the sum of the (positive) divisors of n, is usually denoted by σ(n).

Since a positive number to the zero power is one, σ0(n) is therefore the number of (positive) divisors of n; it is usually denoted by d(n) or τ(n) (for the German Teiler = divisors).

 

Setting k = 0 in the second product gives  

φ(n) – Euler totient function

edit

φ(n), the Euler totient function, is the number of positive integers not greater than n that are coprime to n.

 

Jk(n) – Jordan totient function

edit

Jk(n), the Jordan totient function, is the number of k-tuples of positive integers all less than or equal to n that form a coprime (k + 1)-tuple together with n. It is a generalization of Euler's totient, φ(n) = J1(n).  

μ(n) – Möbius function

edit

μ(n), the Möbius function, is important because of the Möbius inversion formula. See Dirichlet convolution, below.

 

This implies that μ(1) = 1. (Because Ω(1) = ω(1) = 0.)

τ(n) – Ramanujan tau function

edit

τ(n), the Ramanujan tau function, is defined by its generating function identity:

 

Although it is hard to say exactly what "arithmetical property of n" it "expresses",[7] (τ(n) is (2π)−12 times the nth Fourier coefficient in the q-expansion of the modular discriminant function)[8] it is included among the arithmetical functions because it is multiplicative and it occurs in identities involving certain σk(n) and rk(n) functions (because these are also coefficients in the expansion of modular forms).

cq(n) – Ramanujan's sum

edit

cq(n), Ramanujan's sum, is the sum of the nth powers of the primitive qth roots of unity:  

Even though it is defined as a sum of complex numbers (irrational for most values of q), it is an integer. For a fixed value of n it is multiplicative in q:

If q and r are coprime, then  

ψ(n) - Dedekind psi function

edit

The Dedekind psi function, used in the theory of modular functions, is defined by the formula  

Completely multiplicative functions

edit

λ(n) – Liouville function

edit

λ(n), the Liouville function, is defined by  

χ(n) – characters

edit

All Dirichlet characters χ(n) are completely multiplicative. Two characters have special notations:

The principal character (mod n) is denoted by χ0(a) (or χ1(a)). It is defined as  

The quadratic character (mod n) is denoted by the Jacobi symbol for odd n (it is not defined for even n):  

In this formula   is the Legendre symbol, defined for all integers a and all odd primes p by  

Following the normal convention for the empty product,  

Additive functions

edit

ω(n) – distinct prime divisors

edit

ω(n), defined above as the number of distinct primes dividing n, is additive (see Prime omega function).

Completely additive functions

edit

Ω(n) – prime divisors

edit

Ω(n), defined above as the number of prime factors of n counted with multiplicities, is completely additive (see Prime omega function).

νp(n) – p-adic valuation of an integer n

edit

For a fixed prime p, νp(n), defined above as the exponent of the largest power of p dividing n, is completely additive.

Logarithmic derivative

edit

 , where   is the arithmetic derivative.

Neither multiplicative nor additive

edit

π(x), Π(x), ϑ(x), ψ(x) – prime-counting functions

edit

These important functions (which are not arithmetic functions) are defined for non-negative real arguments, and are used in the various statements and proofs of the prime number theorem. They are summation functions (see the main section just below) of arithmetic functions which are neither multiplicative nor additive.

π(x), the prime-counting function, is the number of primes not exceeding x. It is the summation function of the characteristic function of the prime numbers.  

A related function counts prime powers with weight 1 for primes, 1/2 for their squares, 1/3 for cubes, etc. It is the summation function of the arithmetic function which takes the value 1/k on integers which are the k-th power of some prime number, and the value 0 on other integers.

 

ϑ(x) and ψ(x), the Chebyshev functions, are defined as sums of the natural logarithms of the primes not exceeding x.    

The second Chebyshev function ψ(x) is the summation function of the von Mangoldt function just below.

Λ(n) – von Mangoldt function

edit

Λ(n), the von Mangoldt function, is 0 unless the argument n is a prime power pk, in which case it is the natural log of the prime p:  

p(n) – partition function

edit

p(n), the partition function, is the number of ways of representing n as a sum of positive integers, where two representations with the same summands in a different order are not counted as being different:  

λ(n) – Carmichael function

edit

λ(n), the Carmichael function, is the smallest positive number such that     for all a coprime to n. Equivalently, it is the least common multiple of the orders of the elements of the multiplicative group of integers modulo n.

For powers of odd primes and for 2 and 4, λ(n) is equal to the Euler totient function of n; for powers of 2 greater than 4 it is equal to one half of the Euler totient function of n:   and for general n it is the least common multiple of λ of each of the prime power factors of n:  

h(n) – Class number

edit

h(n), the class number function, is the order of the ideal class group of an algebraic extension of the rationals with discriminant n. The notation is ambiguous, as there are in general many extensions with the same discriminant. See quadratic field and cyclotomic field for classical examples.

rk(n) – Sum of k squares

edit

rk(n) is the number of ways n can be represented as the sum of k squares, where representations that differ only in the order of the summands or in the signs of the square roots are counted as different.

 

D(n) – Arithmetic derivative

edit

Using the Heaviside notation for the derivative, the arithmetic derivative D(n) is a function such that

  •   if n prime, and
  •   (the product rule)

Summation functions

edit

Given an arithmetic function a(n), its summation function A(x) is defined by   A can be regarded as a function of a real variable. Given a positive integer m, A is constant along open intervals m < x < m + 1, and has a jump discontinuity at each integer for which a(m) ≠ 0.

Since such functions are often represented by series and integrals, to achieve pointwise convergence it is usual to define the value at the discontinuities as the average of the values to the left and right:  

Individual values of arithmetic functions may fluctuate wildly – as in most of the above examples. Summation functions "smooth out" these fluctuations. In some cases it may be possible to find asymptotic behaviour for the summation function for large x.

A classical example of this phenomenon[9] is given by the divisor summatory function, the summation function of d(n), the number of divisors of n:      

An average order of an arithmetic function is some simpler or better-understood function which has the same summation function asymptotically, and hence takes the same values "on average". We say that g is an average order of f if  

as x tends to infinity. The example above shows that d(n) has the average order log(n).[10]

Dirichlet convolution

edit

Given an arithmetic function a(n), let Fa(s), for complex s, be the function defined by the corresponding Dirichlet series (where it converges):[11]   Fa(s) is called a generating function of a(n). The simplest such series, corresponding to the constant function a(n) = 1 for all n, is ζ(s) the Riemann zeta function.

The generating function of the Möbius function is the inverse of the zeta function:  

Consider two arithmetic functions a and b and their respective generating functions Fa(s) and Fb(s). The product Fa(s)Fb(s) can be computed as follows:  

It is a straightforward exercise to show that if c(n) is defined by   then  

This function c is called the Dirichlet convolution of a and b, and is denoted by  .

A particularly important case is convolution with the constant function a(n) = 1 for all n, corresponding to multiplying the generating function by the zeta function:  

Multiplying by the inverse of the zeta function gives the Möbius inversion formula:  

If f is multiplicative, then so is g. If f is completely multiplicative, then g is multiplicative, but may or may not be completely multiplicative.

Relations among the functions

edit

There are a great many formulas connecting arithmetical functions with each other and with the functions of analysis, especially powers, roots, and the exponential and log functions. The page divisor sum identities contains many more generalized and related examples of identities involving arithmetic functions.

Here are a few examples:

Dirichlet convolutions

edit
      where λ is the Liouville function.[12]
       [13]
        Möbius inversion
       [14]
        Möbius inversion
       [15]
       [16][17]
       [18]
        Möbius inversion
       
        Möbius inversion
       
        Möbius inversion
       
      where λ is the Liouville function.
       [19]
        Möbius inversion

Sums of squares

edit

For all       (Lagrange's four-square theorem).

  [20]

where the Kronecker symbol has the values

 

There is a formula for r3 in the section on class numbers below.   where ν = ν2(n).    [21][22][23]

  where  [24]

Define the function σk*(n) as[25]  

That is, if n is odd, σk*(n) is the sum of the kth powers of the divisors of n, that is, σk(n), and if n is even it is the sum of the kth powers of the even divisors of n minus the sum of the kth powers of the odd divisors of n.

     [24][26]

Adopt the convention that Ramanujan's τ(x) = 0 if x is not an integer.

     [27]

Divisor sum convolutions

edit

Here "convolution" does not mean "Dirichlet convolution" but instead refers to the formula for the coefficients of the product of two power series:

 

The sequence   is called the convolution or the Cauchy product of the sequences an and bn.
These formulas may be proved analytically (see Eisenstein series) or by elementary methods.[28]

     [29]
     [30]
     [30][31]
     [29][32]
      where τ(n) is Ramanujan's function.    [33][34]

Since σk(n) (for natural number k) and τ(n) are integers, the above formulas can be used to prove congruences[35] for the functions. See Ramanujan tau function for some examples.

Extend the domain of the partition function by setting p(0) = 1.

     [36]   This recurrence can be used to compute p(n).
edit

Peter Gustav Lejeune Dirichlet discovered formulas that relate the class number h of quadratic number fields to the Jacobi symbol.[37]

An integer D is called a fundamental discriminant if it is the discriminant of a quadratic number field. This is equivalent to D ≠ 1 and either a) D is squarefree and D ≡ 1 (mod 4) or b) D ≡ 0 (mod 4), D/4 is squarefree, and D/4 ≡ 2 or 3 (mod 4).[38]

Extend the Jacobi symbol to accept even numbers in the "denominator" by defining the Kronecker symbol:  

Then if D < −4 is a fundamental discriminant[39][40]  

There is also a formula relating r3 and h. Again, let D be a fundamental discriminant, D < −4. Then[41]  

edit

Let     be the nth harmonic number. Then

    is true for every natural number n if and only if the Riemann hypothesis is true.    [42]

The Riemann hypothesis is also equivalent to the statement that, for all n > 5040,   (where γ is the Euler–Mascheroni constant). This is Robin's theorem.

 
     [43]
     [44]
     [45]
     [46]

Menon's identity

edit

In 1965 P Kesava Menon proved[47]  

This has been generalized by a number of mathematicians. For example,

  • B. Sury[48]  
  • N. Rao[49]   where a1, a2, ..., as are integers, gcd(a1, a2, ..., as, n) = 1.
  • László Fejes Tóth[50]   where m1 and m2 are odd, m = lcm(m1, m2).

In fact, if f is any arithmetical function[51][52]   where   stands for Dirichlet convolution.

Miscellaneous

edit

Let m and n be distinct, odd, and positive. Then the Jacobi symbol satisfies the law of quadratic reciprocity:  

Let D(n) be the arithmetic derivative. Then the logarithmic derivative   See Arithmetic derivative for details.

Let λ(n) be Liouville's function. Then

      and
     

Let λ(n) be Carmichael's function. Then

      Further,
 

See Multiplicative group of integers modulo n and Primitive root modulo n.  

     [53][54]
     [55]
     [56]     Note that       [57]
 
 
     [58]   Compare this with 13 + 23 + 33 + ... + n3 = (1 + 2 + 3 + ... + n)2
     [59]
     [60]
      where τ(n) is Ramanujan's function.    [61]

First 100 values of some arithmetic functions

edit
n factorization 𝜙(n) ω(n) Ω(n) 𝜆(n) 𝜇(n) 𝛬(n) π(n) 𝜎0(n) 𝜎1(n) 𝜎2(n) r2(n) r3(n) r4(n)
1 1 1 0 0 1 1 0 0 1 1 1 4 6 8
2 2 1 1 1 −1 −1 0.69 1 2 3 5 4 12 24
3 3 2 1 1 −1 −1 1.10 2 2 4 10 0 8 32
4 22 2 1 2 1 0 0.69 2 3 7 21 4 6 24
5 5 4 1 1 −1 −1 1.61 3 2 6 26 8 24 48
6 2 · 3 2 2 2 1 1 0 3 4 12 50 0 24 96
7 7 6 1 1 −1 −1 1.95 4 2 8 50 0 0 64
8 23 4 1 3 −1 0 0.69 4 4 15 85 4 12 24
9 32 6 1 2 1 0 1.10 4 3 13 91 4 30 104
10 2 · 5 4 2 2 1 1 0 4 4 18 130 8 24 144
11 11 10 1 1 −1 −1 2.40 5 2 12 122 0 24 96
12 22 · 3 4 2 3 −1 0 0 5 6 28 210 0 8 96
13 13 12 1 1 −1 −1 2.56 6 2 14 170 8 24 112
14 2 · 7 6 2 2 1 1 0 6 4 24 250 0 48 192
15 3 · 5 8 2 2 1 1 0 6 4 24 260 0 0 192
16 24 8 1 4 1 0 0.69 6 5 31 341 4 6 24
17 17 16 1 1 −1 −1 2.83 7 2 18 290 8 48 144
18 2 · 32 6 2 3 −1 0 0 7 6 39 455 4 36 312
19 19 18 1 1 −1 −1 2.94 8 2 20 362 0 24 160
20 22 · 5 8 2 3 −1 0 0 8 6 42 546 8 24 144
21 3 · 7 12 2 2 1 1 0 8 4 32 500 0 48 256
22 2 · 11 10 2 2 1 1 0 8 4 36 610 0 24 288
23 23 22 1 1 −1 −1 3.14 9 2 24 530 0 0 192
24 23 · 3 8 2 4 1 0 0 9 8 60 850 0 24 96
25 52 20 1 2 1 0 1.61 9 3 31 651 12 30 248
26 2 · 13 12 2 2 1 1 0 9 4 42 850 8 72 336
27 33 18 1 3 −1 0 1.10 9 4 40 820 0 32 320
28 22 · 7 12 2 3 −1 0 0 9 6 56 1050 0 0 192
29 29 28 1 1 −1 −1 3.37 10 2 30 842 8 72 240
30 2 · 3 · 5 8 3 3 −1 −1 0 10 8 72 1300 0 48 576
31 31 30 1 1 −1 −1 3.43 11 2 32 962 0 0 256
32 25 16 1 5 −1 0 0.69 11 6 63 1365 4 12 24
33 3 · 11 20 2 2 1 1 0 11 4 48 1220 0 48 384
34 2 · 17 16 2 2 1 1 0 11 4 54 1450 8 48 432
35 5 · 7 24 2 2 1 1 0 11 4 48 1300 0 48 384
36 22 · 32 12 2 4 1 0 0 11 9 91 1911 4 30 312
37 37 36 1 1 −1 −1 3.61 12 2 38 1370 8 24 304
38 2 · 19 18 2 2 1 1 0 12 4 60 1810 0 72 480
39 3 · 13 24 2 2 1 1 0 12 4 56 1700 0 0 448
40 23 · 5 16 2 4 1 0 0 12 8 90 2210 8 24 144
41 41 40 1 1 −1 −1 3.71 13 2 42 1682 8 96 336
42 2 · 3 · 7 12 3 3 −1 −1 0 13 8 96 2500 0 48 768
43 43 42 1 1 −1 −1 3.76 14 2 44 1850 0 24 352
44 22 · 11 20 2 3 −1 0 0 14 6 84 2562 0 24 288
45 32 · 5 24 2 3 −1 0 0 14 6 78 2366 8 72 624
46 2 · 23 22 2 2 1 1 0 14 4 72 2650 0 48 576
47 47 46 1 1 −1 −1 3.85 15 2 48 2210 0 0 384
48 24 · 3 16 2 5 −1 0 0 15 10 124 3410 0 8 96
49 72 42 1 2 1 0 1.95 15 3 57 2451 4 54 456
50 2 · 52 20 2 3 −1 0 0 15 6 93 3255 12 84 744
51 3 · 17 32 2 2 1 1 0 15 4 72 2900 0 48 576
52 22 · 13 24 2 3 −1 0 0 15 6 98 3570 8 24 336
53 53 52 1 1 −1 −1 3.97 16 2 54 2810 8 72 432
54 2 · 33 18 2 4 1 0 0 16 8 120 4100 0 96 960
55 5 · 11 40 2 2 1 1 0 16 4 72 3172 0 0 576
56 23 · 7 24 2 4 1 0 0 16 8 120 4250 0 48 192
57 3 · 19 36 2 2 1 1 0 16 4 80 3620 0 48 640
58 2 · 29 28 2 2 1 1 0 16 4 90 4210 8 24 720
59 59 58 1 1 −1 −1 4.08 17 2 60 3482 0 72 480
60 22 · 3 · 5 16 3 4 1 0 0 17 12 168 5460 0 0 576
61 61 60 1 1 −1 −1 4.11 18 2 62 3722 8 72 496
62 2 · 31 30 2 2 1 1 0 18 4 96 4810 0 96 768
63 32 · 7 36 2 3 −1 0 0 18 6 104 4550 0 0 832
64 26 32 1 6 1 0 0.69 18 7 127 5461 4 6 24
65 5 · 13 48 2 2 1 1 0 18 4 84 4420 16 96 672
66 2 · 3 · 11 20 3 3 −1 −1 0 18 8 144 6100 0 96 1152
67 67 66 1 1 −1 −1 4.20 19 2 68 4490 0 24 544
68 22 · 17 32 2 3 −1 0 0 19 6 126 6090 8 48 432
69 3 · 23 44 2 2 1 1 0 19 4 96 5300 0 96 768
70 2 · 5 · 7 24 3 3 −1 −1 0 19 8 144 6500 0 48 1152
71 71 70 1 1 −1 −1 4.26 20 2 72 5042 0 0 576
72 23 · 32 24 2 5 −1 0 0 20 12 195 7735 4 36 312
73 73 72 1 1 −1 −1 4.29 21 2 74 5330 8 48 592
74 2 · 37 36 2 2 1 1 0 21 4 114 6850 8 120 912
75 3 · 52 40 2 3 −1 0 0 21 6 124 6510 0 56 992
76 22 · 19 36 2 3 −1 0 0 21 6 140 7602 0 24 480
77 7 · 11 60 2 2 1 1 0 21 4 96 6100 0 96 768
78 2 · 3 · 13 24 3 3 −1 −1 0 21 8 168 8500 0 48 1344
79 79 78 1 1 −1 −1 4.37 22 2 80 6242 0 0 640
80 24 · 5 32 2 5 −1 0 0 22 10 186 8866 8 24 144
81 34 54 1 4 1 0 1.10 22 5 121 7381 4 102 968
82 2 · 41 40 2 2 1 1 0 22 4 126 8410 8 48 1008
83 83 82 1 1 −1 −1 4.42 23 2 84 6890 0 72 672
84 22 · 3 · 7 24 3 4 1 0 0 23 12 224 10500 0 48 768
85 5 · 17 64 2 2 1 1 0 23 4 108 7540 16 48 864
86 2 · 43 42 2 2 1 1 0 23 4 132 9250 0 120 1056
87 3 · 29 56 2 2 1 1 0 23 4 120 8420 0 0 960
88 23 · 11 40 2 4 1 0 0 23 8 180 10370 0 24 288
89 89 88 1 1 −1 −1 4.49 24 2 90 7922 8 144 720
90 2 · 32 · 5 24 3 4 1 0 0 24 12 234 11830 8 120 1872
91 7 · 13 72 2 2 1 1 0 24 4 112 8500 0 48 896
92 22 · 23 44 2 3 −1 0 0 24 6 168 11130 0 0 576
93 3 · 31 60 2 2 1 1 0 24 4 128 9620 0 48 1024
94 2 · 47 46 2 2 1 1 0 24 4 144 11050 0 96 1152
95 5 · 19 72 2 2 1 1 0 24 4 120 9412 0 0 960
96 25 · 3 32 2 6 1 0 0 24 12 252 13650 0 24 96
97 97 96 1 1 −1 −1 4.57 25 2 98 9410 8 48 784
98 2 · 72 42 2 3 −1 0 0 25 6 171 12255 4 108 1368
99 32 · 11 60 2 3 −1 0 0 25 6 156 11102 0 72 1248
100 22 · 52 40 2 4 1 0 0 25 9 217 13671 12 30 744
n factorization 𝜙(n) ω(n) Ω(n) 𝜆(n) 𝜇(n) 𝛬(n) π(n) 𝜎0(n) 𝜎1(n) 𝜎2(n) r2(n) r3(n) r4(n)

Notes

edit
  1. ^ Long (1972, p. 151)
  2. ^ Pettofrezzo & Byrkit (1970, p. 58)
  3. ^ Niven & Zuckerman, 4.2.
  4. ^ Nagell, I.9.
  5. ^ Bateman & Diamond, 2.1.
  6. ^ Hardy & Wright, intro. to Ch. XVI
  7. ^ Hardy, Ramanujan, § 10.2
  8. ^ Apostol, Modular Functions ..., § 1.15, Ch. 4, and ch. 6
  9. ^ Hardy & Wright, §§ 18.1–18.2
  10. ^ Gérald Tenenbaum (1995). Introduction to Analytic and Probabilistic Number Theory. Cambridge studies in advanced mathematics. Vol. 46. Cambridge University Press. pp. 36–55. ISBN 0-521-41261-7.
  11. ^ Hardy & Wright, § 17.6, show how the theory of generating functions can be constructed in a purely formal manner with no attention paid to convergence.
  12. ^ Hardy & Wright, Thm. 263
  13. ^ Hardy & Wright, Thm. 63
  14. ^ see references at Jordan's totient function
  15. ^ Holden et al. in external links The formula is Gegenbauer's
  16. ^ Hardy & Wright, Thm. 288–290
  17. ^ Dineva in external links, prop. 4
  18. ^ Hardy & Wright, Thm. 264
  19. ^ Hardy & Wright, Thm. 296
  20. ^ Hardy & Wright, Thm. 278
  21. ^ Hardy & Wright, Thm. 386
  22. ^ Hardy, Ramanujan, eqs 9.1.2, 9.1.3
  23. ^ Koblitz, Ex. III.5.2
  24. ^ a b Hardy & Wright, § 20.13
  25. ^ Hardy, Ramanujan, § 9.7
  26. ^ Hardy, Ramanujan, § 9.13
  27. ^ Hardy, Ramanujan, § 9.17
  28. ^ Williams, ch. 13; Huard, et al. (external links).
  29. ^ a b Ramanujan, On Certain Arithmetical Functions, Table IV; Papers, p. 146
  30. ^ a b Koblitz, ex. III.2.8
  31. ^ Koblitz, ex. III.2.3
  32. ^ Koblitz, ex. III.2.2
  33. ^ Koblitz, ex. III.2.4
  34. ^ Apostol, Modular Functions ..., Ex. 6.10
  35. ^ Apostol, Modular Functions..., Ch. 6 Ex. 10
  36. ^ G.H. Hardy, S. Ramannujan, Asymptotic Formulæ in Combinatory Analysis, § 1.3; in Ramannujan, Papers p. 279
  37. ^ Landau, p. 168, credits Gauss as well as Dirichlet
  38. ^ Cohen, Def. 5.1.2
  39. ^ Cohen, Corr. 5.3.13
  40. ^ see Edwards, § 9.5 exercises for more complicated formulas.
  41. ^ Cohen, Prop 5.3.10
  42. ^ See Divisor function.
  43. ^ Hardy & Wright, eq. 22.1.2
  44. ^ See prime-counting functions.
  45. ^ Hardy & Wright, eq. 22.1.1
  46. ^ Hardy & Wright, eq. 22.1.3
  47. ^ László Tóth, Menon's Identity and Arithmetical Sums ..., eq. 1
  48. ^ Tóth, eq. 5
  49. ^ Tóth, eq. 3
  50. ^ Tóth, eq. 35
  51. ^ Tóth, eq. 2
  52. ^ Tóth states that Menon proved this for multiplicative f in 1965 and V. Sita Ramaiah for general f.
  53. ^ Hardy Ramanujan, eq. 3.10.3
  54. ^ Hardy & Wright, § 22.13
  55. ^ Hardy & Wright, Thm. 329
  56. ^ Hardy & Wright, Thms. 271, 272
  57. ^ Hardy & Wright, eq. 16.3.1
  58. ^ Ramanujan, Some Formulæ in the Analytic Theory of Numbers, eq. (C); Papers p. 133. A footnote says that Hardy told Ramanujan it also appears in an 1857 paper by Liouville.
  59. ^ Ramanujan, Some Formulæ in the Analytic Theory of Numbers, eq. (F); Papers p. 134
  60. ^ Apostol, Modular Functions ..., ch. 6 eq. 4
  61. ^ Apostol, Modular Functions ..., ch. 6 eq. 3

References

edit

Further reading

edit
  • Schwarz, Wolfgang; Spilker, Jürgen (1994), Arithmetical Functions. An introduction to elementary and analytic properties of arithmetic functions and to some of their almost-periodic properties, London Mathematical Society Lecture Note Series, vol. 184, Cambridge University Press, ISBN 0-521-42725-8, Zbl 0807.11001
edit