Marvel temperaments

From Xenharmonic Wiki
Revision as of 03:57, 4 November 2024 by Recentlymaterialized (talk | contribs) (151bcee is not a GPV)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

This page discusses miscellaneous rank-2 temperaments tempering out [-5 2 2 -1 = 225/224, the marvel comma or septimal kleisma.

Temperaments considered in families and clans are:

Considered below are wizard, tritonic, septimin, slender, triton, merman, marvolo, amavil, enneaportent, submajor, alphorn, tertiosec, gwazy, and gracecordial.

Since (5/4)2 = 225/224 × 14/9, these temperaments tend to have a relatively small complexity for 5/4. They also possess a version of the augmented triad where each third approximates either 5/4 or 9/7. Since this is a chord of meantone temperament in wide use in Western common practice harmony long before 12edo established itself as the standard tuning, it is arguably more authentic to tune it as two stacked major thirds and a diminished fourth, which is what it is in meantone, than as the modern version of three stacked very sharp major thirds.

The melodic signature of marvel temperaments is that 16/15 and 15/14 are tempered to be equal. Hence 8/7 can be divided into two equal parts.

Marvel tempering allows for a tritone substitution whereby the dominant seventh chord formed by adding 16/9 above the root shares its tritone with a 4:5:6:7 tetrad. (The tritone of the dominant seventh is (16/9)/(5/4) = 64/45. Setting this equal to 10/7 gives (10/7)/(64/45) = 225/224.)

Wizard

For the 5-limit version of this temperament, see High badness temperaments #Wizard.

Subgroup: 2.3.5.7

Comma list: 225/224, 118098/117649

Mapping[2 1 5 2], 0 6 -1 10]]

mapping generators: ~1225/864, ~245/216

Wedgie⟨⟨ 12 -2 20 -31 -2 52 ]]

Optimal tuning (POTE): ~1225/864 = 1\2, ~5/4 = 383.256 (~245/216 = 216.744)

Optimal ET sequence22, 50, 72, 166, 238c, 310c, 382c

Badness: 0.040846

Scales: wizard22

11-limit

Subgroup: 2.3.5.7.11

Comma list: 225/224, 385/384, 4000/3993

Mapping: [2 1 5 2 8], 0 6 -1 10 -3]]

Optimal tuning (POTE): ~99/70 = 1\2, ~5/4 = 383.232 (~25/22 = 216.768)

Optimal ET sequence22, 50, 72, 166, 238c, 310c

Badness: 0.018539

Scales: wizard22

Lizard

Subgroup: 2.3.5.7.11.13

Comma list: 225/224, 351/350, 364/363, 385/384

Mapping: [2 1 5 2 8 11], 0 6 -1 10 -3 -10]]

Optimal tuning (POTE): ~55/39 = 1\2, ~5/4 = 383.389 (~25/22 = 216.711)

Optimal ET sequence22, 50, 72, 122, 194df

Badness: 0.021781

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 221/220, 273/272, 289/288, 351/350, 375/374

Mapping: [2 1 5 2 8 11 6], 0 6 -1 10 -3 -10 6]]

Optimal tuning (POTE): ~17/12 = 1\2, ~5/4 = 383.381 (~17/15 = 216.619)

Optimal ET sequence22, 50, 72, 122g, 194dfg

Badness: 0.014536

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 153/152, 210/209, 221/220, 225/224, 273/272, 343/342

Mapping: [2 1 5 2 8 11 6 2], 0 6 -1 10 -3 -10 6 18]]

Optimal tuning (POTE): ~17/12 = 1\2, ~5/4 = 383.477 (~17/15 = 216.523)

Optimal ET sequence22h, 50, 72, 122g, 194dfg

Badness: 0.015702

Gizzard

Subgroup: 2.3.5.7.11.13

Comma list: 225/224, 325/324, 385/384, 1573/1568

Mapping: [2 1 5 2 8 -2], 0 6 -1 10 -3 26]]

Optimal tuning (POTE): ~99/70 = 1\2, ~5/4 = 383.170 (~25/22 = 216.830)

Optimal ET sequence72, 166, 238cf

Badness: 0.020252

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 225/224, 289/288, 325/324, 375/374, 385/384

Mapping: [2 1 5 2 8 -2 6], 0 6 -1 10 -3 26 6]]

Optimal tuning (POTE): ~17/12 = 1\2, ~5/4 = 383.175 (~25/22 = 216.825)

Optimal ET sequence72, 166g, 238cfg

Badness: 0.013624

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 225/224, 325/324, 375/374, 385/384, 400/399, 595/594

Mapping: [2 1 5 2 8 -2 6 15], 0 6 -1 10 -3 26 6 -18]]

Optimal tuning (POTE): ~17/12 = 1\2, ~5/4 = 383.138 (~17/15 = 216.862)

Optimal ET sequence72, 94, 166g

Badness: 0.014810

Mage

Subgroup: 2.3.5.7.11

Comma list: 99/98, 176/175, 1331/1296

Mapping: [2 1 5 2 4], 0 6 -1 10 8]]

Optimal tuning (POTE): ~77/54 = 1\2, ~5/4 = 383.124 (~55/48 = 216.876)

Optimal ET sequence22, 50e, 72ee, 94ee

Badness: 0.057799

Tritonic

For the 5-limit version of this temperament, see High badness temperaments #Tritonic.

Subgroup: 2.3.5.7

Comma list: 225/224, 50421/50000

Mapping[1 4 -3 -3], 0 -5 11 12]]

Wedgie⟨⟨ 5 -11 -12 -29 -33 3 ]]

Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 580.286

Optimal ET sequence29, 31, 60, 91, 122, 213bcd

Badness: 0.047578

11-limit

Subgroup: 2.3.5.7.11

Comma list: 121/120, 225/224, 441/440

Mapping: [1 4 -3 -3 2], 0 -5 11 12 3]]

Wedgie⟨⟨ 5 -11 -12 -3 -29 -33 -22 3 31 33 ]]

Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 580.267

Optimal ET sequence29, 31, 60e

Badness: 0.023659

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 105/104, 121/120, 196/195, 275/273

Mapping: [1 4 -3 -3 2 -5], 0 -5 11 12 3 18]]

Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 580.108

Optimal ET sequence29, 31, 60e

Badness: 0.022993

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 105/104, 121/120, 154/153, 196/195, 273/272

Mapping: [1 4 -3 -3 2 -5 -8], 0 -5 11 12 3 18 25]]

Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 580.055

Optimal ET sequence29g, 31, 60e

Badness: ?

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 77/76, 105/104, 121/120, 153/152, 196/195, 273/272

Mapping: [1 4 -3 -3 2 -5 -8 -3], 0 -5 11 12 3 18 25 15]]

Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 580.026

Optimal ET sequence29g, 31, 60e

Badness: ?

23-limit

Subgroup: 2.3.5.7.11.13.17.19.23

Comma list: 77/76, 105/104, 115/114, 121/120, 153/152, 161/160, 196/195

Mapping: [1 4 -3 -3 2 -5 -8 -3 5], 0 -5 11 12 3 18 25 15 -1]]

Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 580.009

Optimal ET sequence29g, 31, 60e

Badness: ?

Tritoni

Subgroup: 2.3.5.7.11

Comma list: 225/224, 385/384, 27783/27500

Mapping: [1 4 -3 -3 17], 0 -5 11 12 -28]]

Wedgie⟨⟨ 5 -11 -12 28 -29 -33 27 3 103 120 ]]

Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 580.389

Optimal ET sequence31, 91, 122, 153d

Badness: 0.045456

Septimin

For the 5-limit version of this temperament, see High badness temperaments #Septimin.

Subgroup: 2.3.5.7

Comma list: 225/224, 84035/82944

Mapping[1 4 1 5], 0 -11 6 -10]]

Wedgie⟨⟨ 11 -6 10 -35 -15 40 ]]

Optimal tuning (POTE): ~2 = 1\1, ~7/6 = 263.632

Optimal ET sequence41, 91, 132d

Badness: 0.054502

11-limit

Subgroup: 2.3.5.7.11

Comma list: 225/224, 385/384, 2401/2376

Mapping: [1 4 1 5 5], 0 -11 6 -10 -7]]

Optimal tuning (POTE): ~2 = 1\1, ~7/6 = 263.634

Optimal ET sequence41, 91, 223cdef

Badness: 0.031309

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 105/104, 144/143, 196/195, 245/242

Mapping: [1 4 1 5 5 7], 0 -11 6 -10 -7 -15]]

Optimal tuning (POTE): ~2 = 1\1, ~7/6 = 263.700

Optimal ET sequence41, 91

Badness: 0.023117

Merman

For the 5-limit version of this temperament, see High badness temperaments #Merman.

Subgroup: 2.3.5.7

Comma list: 225/224, 2500000/2470629

Mapping[1 5 -5 -5], 0 -7 15 16]]

Wedgie⟨⟨ 7 -15 -16 -40 -45 5 ]]

Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 585.585

Optimal ET sequence41, 84, 125

Badness: 0.055078

11-limit

Subgroup: 2.3.5.7.11

Comma list: 225/224, 441/440, 1344/1331

Mapping: [1 5 -5 -5 2], 0 -7 15 16 3]]

Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 585.606

Optimal ET sequence41, 84, 125e

Badness: 0.036383

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 144/143, 225/224, 364/363, 441/440

Mapping: [1 5 -5 -5 2 12], 0 -7 15 16 3 -17]]

Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 585.657

Optimal ET sequence41, 84, 125e, 209ef, 293ef

Badness: 0.027544

Slender

Slender (31 & 32) tempers out the hewuermera comma in addition to the marvel comma. This temperament has a generator of 49/48, 3 of which equal marvel's 16/15~15/14, and 10 generators is 5/4.

Subgroup: 2.3.5.7

Comma list: 225/224, 589824/588245

Mapping[1 2 2 3], 0 -13 10 -6]]

Wedgie⟨⟨ 13 -10 6 -46 -27 42 ]]

Optimal tuning (POTE): ~2 = 1\1, ~49/48 = 38.413

Optimal ET sequence31, 94, 125

Badness: 0.056934

11-limit

Subgroup: 2.3.5.7.11

Comma list: 225/224, 385/384, 1331/1323

Mapping: [1 2 2 3 4], 0 -13 10 -6 -17]]

Optimal tuning (POTE): ~2 = 1\1, ~49/48 = 38.387

Optimal ET sequence31, 63, 94, 125

Badness: 0.025342

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 225/224, 275/273, 385/384, 1331/1323

Mapping: [1 2 2 3 4 3], 0 -13 10 -6 -17 22]]

Optimal tuning (POTE): ~2 = 1\1, ~49/48 = 38.314

Optimal ET sequence31, 63, 94

Badness: 0.025913

Triton

For the 5-limit version of this temperament, see High badness temperaments #Stump.

Subgroup: 2.3.5.7

Comma list: 225/224, 1029/1000

Mapping[1 0 6 7], 0 3 -7 -8]]

Wedgie⟨⟨ 3 -7 -8 -18 -21 1 ]]

Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 568.865

Optimal ET sequence2, 17d, 19, 78bd, 97bd

Badness: 0.059245

11-limit

Subgroup: 2.3.5.7.11

Comma list: 45/44, 56/55, 1029/1000

Mapping: [1 0 6 7 4], 0 3 -7 -8 -1]]

Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 569.144

Optimal ET sequence2, 17d, 19, 59bde, 78bde, 97bde

Badness: 0.045675

Submajor

Subgroup: 2.3.5

Comma list: 69198046875/68719476736

Mapping[1 4 -1], 0 -8 11]]

Optimal tuning (POTE): ~2 = 1\1, ~10125/8192 = 362.321

Optimal ET sequence10, 33, 43, 53, 202, 255, 308, 361, 414, 775, 1189bc

Badness: 0.130236

7-limit

Subgroup: 2.3.5.7

Comma list: 225/224, 51200/50421

Mapping[1 4 -1 1], 0 -8 11 6]]

Wedgie⟨⟨ 8 -11 -6 -36 -32 17 ]]

Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 362.255

Optimal ET sequence10, 33, 43, 53

Badness: 0.060533

11-limit

Subgroup: 2.3.5.7.11

Comma list: 225/224, 385/384, 6655/6561

Mapping: [1 4 -1 1 11], 0 -8 11 6 -25]]

Optimal tuning (POTE): ~2 = 1\1, ~27/22 = 362.101

Optimal ET sequence10, 43e, 53, 116, 169de, 285cde

Badness: 0.050582

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 169/168, 225/224, 275/273, 385/384

Mapping: [1 4 -1 1 11 4], 0 -8 11 6 -25 -1]]

Optimal tuning (POTE): ~2 = 1\1, ~16/13 = 362.105

Optimal ET sequence10, 43e, 53, 116, 169de, 285cdef

Badness: 0.027689

Interpental

Subgroup: 2.3.5.7.11

Comma list: 99/98, 176/175, 51200/50421

Mapping: [1 4 -1 1 -5], 0 -8 11 6 28]]

Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 362.418

Optimal ET sequence43, 53, 96, 149d

Badness: 0.051806

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 99/98, 169/168, 176/175, 640/637

Mapping: [1 4 -1 1 -5 4], 0 -8 11 6 28 -1]]

Optimal tuning (POTE): ~2 = 1\1, ~16/13 = 362.402

Optimal ET sequence43, 53, 96, 149d

Badness: 0.029680

Marvolo

Subgroup: 2.3.5.7

Comma list: 225/224, 156250000/155649627

Mapping[1 2 1 1], 0 -6 19 26]]

Wedgie⟨⟨ 6 -19 -26 -44 -58 -7 ]]

Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 83.348

Optimal ET sequence29, 43, 72, 619bcd, 691bcd

Badness: 0.083338

11-limit

Subgroup: 2.3.5.7.11

Comma list: 225/224, 441/440, 4000/3993

Mapping: [1 2 1 1 2], 0 -6 19 26 21]]

Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 83.340

Optimal ET sequence29, 43, 72

Badness: 0.028965

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 169/168, 225/224, 364/363, 441/440

Mapping: [1 2 1 1 2 3], 0 -6 19 26 21 10]]

Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 83.330

Optimal ET sequence29, 43, 72, 115f

Badness: 0.021470

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 169/168, 221/220, 225/224, 364/363, 441/440

Mapping: [1 2 1 1 2 3 2], 0 -6 19 26 21 10 30]]

Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 83.330

Optimal ET sequence29g, 43, 72

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 169/168, 210/209, 221/220, 225/224, 364/363, 441/440

Mapping: [1 2 1 1 2 3 2 3], 0 -6 19 26 21 10 30 18]]

Optimal tuning (POTE): ~2 = 1\1, ~21/20 = 83.330

Optimal ET sequence29g, 43, 72

Enneaportent

Subgroup: 2.3.5.7

Comma list: 225/224, 40353607/40310784

Mapping[9 0 28 11], 0 2 -1 2]]

mapping generators: ~2592/2401, ~12005/6912

Wedgie⟨⟨ 18 -9 18 -56 -22 67 ]]

Optimal tuning (POTE): ~2592/2401 = 1\9, ~12005/6912 = 950.1680 (~1728/1715 = 16.8347)

Optimal ET sequence9, 63, 72, 495bcd

Badness: 0.093679

11-limit

Subgroup: 2.3.5.7.11

Comma list: 225/224, 385/384, 12005/11979

Mapping: [9 0 28 11 24], 0 2 -1 2 1]]

Optimal tuning (POTE): ~121/112 = 1\9, ~210/121 = 950.1873 (~99/98 = 16.8540)

Optimal ET sequence9, 63, 72, 423cd, 495bcd

Badness: 0.030426

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 169/168, 225/224, 364/363, 1716/1715

Mapping: [9 0 28 11 24 19], 0 2 -1 2 1 2]]

Optimal tuning (POTE): ~14/13 = 1\9, ~26/15 = 950.2867 (~105/104 = 16.9534)

Optimal ET sequence9, 63, 72, 279cf

Badness: 0.022322

Gracecordial

For the 5-limit version of this temperament, see High badness temperaments #Gracecordial.

Subgroup: 2.3.5.7

Comma list: 225/224, 781250000/771895089

Mapping[1 0 34 63], 0 1 -20 -38]]

Wedgie⟨⟨ 1 -20 -38 -34 -63 -32 ]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 700.824

Optimal ET sequence12, 113, 125, 238c, 363c

Badness: 0.096279

11-limit

Subgroup: 2.3.5.7.11

Comma list: 225/224, 385/384, 236328125/234365481

Mapping: [1 0 34 63 -90], 0 1 -20 -38 59]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 700.834

Optimal ET sequence12e, 101cde, 113, 125, 238c

Badness: 0.089588

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 225/224, 325/324, 385/384, 831875/830466

Mapping: [1 0 34 63 -90 -66], 0 1 -20 -38 59 44]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 700.841

Optimal ET sequence12e, 101cde, 113, 125f, 238cf

Badness: 0.052235

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 225/224, 273/272, 325/324, 385/384, 4928/4913

Mapping: [1 0 34 63 -90 -66 -7], 0 1 -20 -38 59 44 7]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 700.841

Optimal ET sequence12e, 101cde, 113, 125f, 238cf

Badness: 0.038565

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 225/224, 273/272, 324/323, 325/324, 385/384, 1445/1444

Mapping: [1 0 34 63 -90 -66 -7 9], 0 1 -20 -38 59 44 7 -3]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 700.842

Optimal ET sequence12e, 101cde, 113, 125f, 238cf

Badness: 0.028165

23-limit

Subgroup: 2.3.5.7.11.13.17.19.23

Comma list: 225/224, 273/272, 324/323, 325/324, 385/384, 460/459, 529/528

Mapping: [1 0 34 63 -90 -66 -7 9 -43], 0 1 -20 -38 59 44 7 -3 30]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 700.843

Optimal ET sequence12e, 101cde, 113, 238cfi

Badness: 0.021879

29-limit

Subgroup: 2.3.5.7.11.13.17.19.23.29

Comma list: 225/224, 273/272, 290/289, 324/323, 325/324, 385/384, 460/459, 494/493

Mapping: [1 0 34 63 -90 -66 -7 9 -43 -49], 0 1 -20 -38 59 44 7 -3 30 34]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 700.842

Optimal ET sequence12e, 101cde, 113, 125f, 238cfi

Badness: 0.018011

31-limit

Subgroup: 2.3.5.7.11.13.17.19.23.29.31

Comma list: 225/224, 273/272, 290/289, 324/323, 325/324, 385/384, 460/459, 465/464, 494/493

Mapping: [1 0 34 63 -90 -66 -7 9 -43 -49 -79], 0 1 -20 -38 59 44 7 -3 30 34 53]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 700.838

Optimal ET sequence12e, 101cdek, 113, 125f, 238cfi

Badness: 0.016007

Gracecord

Subgroup: 2.3.5.7.11

Comma list: 225/224, 441/440, 109375/107811

Mapping: [1 0 34 63 89], 0 1 -20 -38 -54]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 700.885

Optimal ET sequence12, 101cd, 113

Badness: 0.066964

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 225/224, 364/363, 441/440, 6125/6084

Mapping: [1 0 34 63 89 113], 0 1 -20 -38 -54 -69]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 700.890

Optimal ET sequence12f, 101cdf, 113

Badness: 0.044196

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 225/224, 364/363, 441/440, 595/594, 2000/1989

Mapping: [1 0 34 63 89 113 -7], 0 1 -20 -38 -54 -69 7]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 700.870

Optimal ET sequence12f, 101cdf, 113

Badness: 0.036637

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 210/209, 225/224, 324/323, 364/363, 400/399, 665/663

Mapping: [1 0 34 63 89 113 -7 9], 0 1 -20 -38 -54 -69 7 -3]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 700.866

Optimal ET sequence12f, 101cdf, 113

Badness: 0.027559

Alphorn

Subgroup: 2.3.5.7

Comma list: 225/224, 5764801/5668704

Mapping[1 9 0 13], 0 -16 5 -22]]

Wedgie⟨⟨ 16 -5 22 -45 -10 65 ]]

Optimal tuning (POTE): ~2 = 1\1, ~48/35 = 556.221

Optimal ET sequence28d, 41, 151cd, 192cd, 233cd

Badness: 0.129258

11-limit

Subgroup: 2.3.5.7.11

Comma list: 225/224, 385/384, 12250/11979

Mapping: [1 9 0 13 3], 0 -16 5 -22 1]]

Optimal tuning (POTE): ~2 = 1\1, ~11/8 = 556.144

Optimal ET sequence28d, 41, 315cde

Badness: 0.073459

Misneb

For the 5-limit version of this temperament, see High badness temperaments #Misneb.

Subgroup: 2.3.5.7

Comma list: 225/224, 4194304/4117715

Mapping[1 3 1 3], 0 -15 14 -2]]

Wedgie⟨⟨ 15 -14 2 -57 -39 44 ]]

Optimal tuning (POTE): ~2 = 1\1, ~16/15 = 113.235

Optimal ET sequence21, 32, 53

Badness: 0.140970

11-limit

Subgroup: 2.3.5.7.11

Comma list: 99/98, 176/175, 1310720/1294139

Mapping: [1 3 1 3 1], 0 -15 14 -2 26]]

Optimal tuning (POTE): ~2 = 1\1, ~16/15 = 113.323

Optimal ET sequence21, 32e, 53, 127, 180de

Badness: 0.085390

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 99/98, 176/175, 640/637, 847/845

Mapping: [1 3 1 3 1 2], 0 -15 14 -2 26 18]]

Optimal tuning (POTE): ~2 = 1\1, ~16/15 = 113.323

Optimal ET sequence21, 32e, 53, 127, 180de

Badness: 0.045569

Musneb

Subgroup: 2.3.5.7.11

Comma list: 225/224, 385/384, 66550/64827

Mapping: [1 3 1 3 6], 0 -15 14 -2 -27]]

Optimal tuning (POTE): ~2 = 1\1, ~16/15 = 113.142

Optimal ET sequence32, 53, 191de, 244cddee, 297cddee

Badness: 0.087333

Untriton

For the 5-limit version of this temperament, see High badness temperaments #Untriton.

Subgroup: 2.3.5.7

Comma list: 225/224, 125000000/121060821

Mapping[1 6 -7 -7], 0 -9 19 20]]

Wedgie⟨⟨ 9 -19 -20 -51 -57 7 ]]

Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 588.641

Optimal ET sequence51, 53, 316cd, 369cdd, 422cdd

Badness: 0.143976

11-limit

Subgroup: 2.3.5.7.11

Comma list: 121/120, 225/224, 22000/21609

Mapping: [1 6 -7 -7 1], 0 -9 19 20 5]]

Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 588.626

Optimal ET sequence51, 53

Badness: 0.074295

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 225/224, 275/273, 1040/1029

Mapping: [1 6 -7 -7 1 -12], 0 -9 19 20 5 32]]

Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 588.654

Optimal ET sequence51f, 53

Badness: 0.047441

Quintannic

Subgroup: 2.3.5.7

Comma list: 225/224, 9805926501/9765625000

Mapping[1 1 5 7], 0 5 -23 -36]]

Wedgie⟨⟨ 5 -23 -36 -48 -71 -19 ]]

Optimal tuning (POTE): ~2 = 1\1, ~10000/9261 = 139.838

Optimal ET sequence43, 60, 103, 266bcd, 369bcd

Badness: 0.150565

11-limit

Subgroup: 2.3.5.7.11

Comma list: 225/224, 441/440, 43923/43750

Mapping: [1 1 5 7 8], 0 5 -23 -36 -39]]

Optimal tuning (POTE): ~2 = 1\1, ~320/297 = 139.827

Optimal ET sequence43, 60e, 103

Badness: 0.052590

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 225/224, 441/440, 1001/1000, 1188/1183

Mapping: [1 1 5 7 8 3], 0 5 -23 -36 -39 6]]

Optimal tuning (POTE): ~2 = 1\1, ~13/12 = 139.812

Optimal ET sequence43, 60e, 103

Badness: 0.032730

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 225/224, 273/272, 375/374, 441/440, 891/884

Mapping: [1 1 5 7 8 3 7], 0 5 -23 -36 -39 6 -25]]

Optimal tuning (POTE): ~2 = 1\1, ~13/12 = 139.815

Optimal ET sequence43, 60e, 103

Badness: 0.023038

Gwazy

Subgroup: 2.3.5.7

Comma list: 225/224, 5971968/5764801

Mapping[2 1 6 4], 0 8 -5 6]]

Wedgie⟨⟨ 16 -10 12 -53 -26 56 ]]

Optimal tuning (POTE): ~2401/1728 = 1\2, ~35/32 = 162.658

Optimal ET sequence22, 74, 96, 118d

Badness: 0.178826

11-limit

Subgroup: 2.3.5.7.11

Comma list: 99/98, 176/175, 65536/65219

Mapping: [2 1 6 4 8], 0 8 -5 6 -4]]

Optimal tuning (POTE): ~363/256 = 1\2, ~11/10 = 162.592

Optimal ET sequence22, 74, 96, 118d

Badness: 0.068410

Tertiosec

For the 5-limit version of this temperament, see High badness temperaments #Tertiosec.

Subgroup: 2.3.5.7

Comma list: 225/224, 14495514624/13841287201

Mapping[3 7 5 9], 0 -8 7 -2]]

Wedgie⟨⟨ 24 -21 6 -89 -58 73 ]]

Optimal tuning (POTE): ~3072/2401 = 1\3, ~15/14 = 112.283

Optimal ET sequence21, 54, 75, 96, 171d

Badness: 0.431636

11-limit

Subgroup: 2.3.5.7.11

Comma list: 225/224, 3840/3773, 12005/11979

Mapping: [3 7 5 9 9], 0 -8 7 -2 5]]

Optimal tuning (POTE): ~44/35 = 1\3, ~15/14 = 112.171

Optimal ET sequence21, 54, 75e

Badness: 0.173485