Face (géométrie)

polygone qui défini l'une des faces d'un polyèdre

En géométrie, les faces d'un polyèdre sont les polygones qui le bordent. Par exemple, un cube possède six faces qui sont des carrés.  Le suffixe èdre de polyèdre,  dérivé du grec hedra,  signifie face.

Chaque  sommet  d’un  cube est commun à trois de ses six  faces  carrées.

Par extension, les faces d'un polytope de dimension n sont tous les polytopes de dimension strictement inférieure à n qui le bordent (et pas seulement ceux de dimension n-1).

Définition formelle

modifier

En géométrie convexe (en), une face d'un polytope convexe P est définie comme étant le polytope intersection de P avec l'un de ses hyperplans d'appui.

Une face de dimension k est appelée k-face.

Par cette définition, un 4-polytope (par exemple, un tesseract) possède les faces suivantes :

  • 4-face : le 4-polytope lui-même, de dimension 4 ;
  • 3-face : toute cellule, de dimension 3 ;
  • 2-face : toute face polygonale (correspondant à la définition courante du terme) ;
  • 1-face : toute arête
  • 0-face : tout sommet
  • l'ensemble vide.

Facette

modifier

Si un polytope est de dimension n, ses (n–1)-faces sont parfois appelées « facettes ». Il s'agit, par exemple, d'une cellule d'un 4-polytope, d'un « face » d'un polyèdre ou d'une arête d'un polygone.

Une (n–2)-face est parfois appelée « arête ».

Annexes

modifier

Articles connexes

modifier

Liens externes

modifier