This case study will demonstrate how to run DeepVariant using the RNA-seq model,
and evaluate the result using hap.py
.
We will use the following tools:
- Docker - Used to run DeepVariant.
- mosdepth - For calculating coverage.
- bedtools - Used to intersect bedfiles.
- hap.py - Used to evaluate the results.
We will use Docker to run
hap.py
.
We will use these data in our analysis. Files will be downloaded in subsequent steps.
- HG005 RNA-seq BAM
- Model Checkpoint Files
- GRCh38 Reference + Index
- CDS bedfile (chr20 only)
- GIAB benchmark data
Lets first create directories to organize files.
mkdir -p data benchmark reference model output happy
We will be using GRCh38 for this case study.
FTPDIR=ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids
curl ${FTPDIR}/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz | gunzip > reference/GRCh38_no_alt_analysis_set.fasta
curl ${FTPDIR}/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.fai > reference/GRCh38_no_alt_analysis_set.fasta.fai
We will benchmark our variant calls against v4.2.1 of the Genome in a Bottle small variant benchmarks for HG005. We will also restrict analysis to CDS regions on chromosome 20 to make this demonstration quicker.
The benchmarks consist of a bedfile containing confident regions, a VCF of 'true' variants, and a VCF index.
FTPDIR=ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/ChineseTrio/HG005_NA24631_son/NISTv4.2.1/GRCh38
curl -L ${FTPDIR}/HG005_GRCh38_1_22_v4.2.1_benchmark.bed > benchmark/HG005_GRCh38_1_22_v4.2.1_benchmark.bed
curl -L ${FTPDIR}/HG005_GRCh38_1_22_v4.2.1_benchmark.vcf.gz > benchmark/HG005_GRCh38_1_22_v4.2.1_benchmark.vcf.gz
curl -L ${FTPDIR}/HG005_GRCh38_1_22_v4.2.1_benchmark.vcf.gz.tbi > benchmark/HG005_GRCh38_1_22_v4.2.1_benchmark.vcf.gz.tbi
Next, we will download a gencode gff3 annotation and extract a bed file of chr20 CDS regions.
curl -L https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_41/gencode.v41.basic.annotation.gff3.gz > data/gencode.v41.basic.annotation.gff3.gz
# Extract chr20 CDS regions and convert to bed file.
gzip -dc data/gencode.v41.basic.annotation.gff3.gz | \
awk -v OFS='\t' '$1 == "chr20" && $3 == "CDS" && $4 < $5 { print $1, $4, $5, "CDS" }' | \
awk '!dup[$0]++' > data/chr20_CDS.bed
We'll use HG005 poly-A selected Illumina RNA-seq reads that are publicly available.
HTTPDIR=https://storage.googleapis.com/brain-genomics-public/research/sequencing/grch38/bam/rna/illumina/mrna
curl -L ${HTTPDIR}/hg005_gm26107.mrna.grch38.bam > data/hg005_gm26107.mrna.grch38.bam
curl -L ${HTTPDIR}/hg005_gm26107.mrna.grch38.bam.bai > data/hg005_gm26107.mrna.grch38.bam.bai
RNA-seq data is only observed in regions that are expressed in a given sample. Therefore, we will restrict our evaluation to regions of the BAM file that reach a minimum threshold of 3x in our truth dataset intersected with the confident GIAB regions. This allows us to better evaluate the accuracy of the model when it is feasible for a variant to be called from RNA-seq data.
# Generate a coverage file, and filter for 3x.
sudo docker run \
-v "$(pwd):$(pwd)" \
-w $(pwd) \
-it quay.io/biocontainers/mosdepth:0.3.1--h4dc83fb_1 \
mosdepth \
--threads $(nproc) \
data/hg005_coverage \
data/hg005_gm26107.mrna.grch38.bam
For these next commands, we will run Docker interactively to execute a series of commands. Run the following command to launch a bedtools container.
sudo docker run \
-v "$(pwd):$(pwd)" \
-w $(pwd) \
-it quay.io/biocontainers/bedtools:2.23.0--h5b5514e_6 \
/bin/bash
We will restrict our analysis to regions with a minimum of 3x coverage.
# (Run within the bedtools container)
min_coverage=3
gzip -dc data/hg005_coverage.per-base.bed.gz | \
egrep -v 'HLA|decoy|random|alt|chrUn|chrEBV' | \
awk -v OFS="\t" -v min_coverage=${min_coverage} '$4 >= min_coverage { print }' | \
bedtools merge -d 1 -c 4 -o mean -i - > data/hg005_3x.bed
Now we will intersect our 3x bedfile with the CDS bed file:
# (Run within the bedtools container)
bedtools intersect \
-a data/hg005_3x.bed \
-b data/chr20_CDS.bed > data/chr20_CDS_3x.bed
# We will also intersect this file with confident GIAB regions
bedtools intersect \
-a benchmark/HG005_GRCh38_1_22_v4.2.1_benchmark.bed \
-b data/chr20_CDS_3x.bed > benchmark/chr20_CDS_3x.benchmark_regions.bed
We now have a bed file of CDS regions intersected with 3x coverage regions
called data/chr20_CDS_3x.bed
. You can exit the docker container now. Type
exit
and hit enter.
Finally, lets download the RNA-seq model that we will use to call variants.
curl https://storage.googleapis.com/deepvariant/models/DeepVariant/1.4.0/DeepVariant-inception_v3-1.4.0+data-rnaseq_standard/model.ckpt.data-00000-of-00001 > model/model.ckpt.data-00000-of-00001
curl https://storage.googleapis.com/deepvariant/models/DeepVariant/1.4.0/DeepVariant-inception_v3-1.4.0+data-rnaseq_standard/model.ckpt.example_info.json > model/model.ckpt.example_info.json
curl https://storage.googleapis.com/deepvariant/models/DeepVariant/1.4.0/DeepVariant-inception_v3-1.4.0+data-rnaseq_standard/model.ckpt.index > model/model.ckpt.index
curl https://storage.googleapis.com/deepvariant/models/DeepVariant/1.4.0/DeepVariant-inception_v3-1.4.0+data-rnaseq_standard/model.ckpt.meta > model/model.ckpt.meta
After you have run the steps above, your directory structure should look like this:
.
├── benchmark
│ ├── chr20_CDS_3x.benchmark_regions.bed
│ ├── HG005_GRCh38_1_22_v4.2.1_benchmark.bed
│ ├── HG005_GRCh38_1_22_v4.2.1_benchmark.vcf.gz
│ └── HG005_GRCh38_1_22_v4.2.1_benchmark.vcf.gz.tbi
├── data
│ ├── chr20_CDS_3x.bed
│ ├── chr20_CDS.bed
│ ├── gencode.v41.basic.annotation.gff3.gz
│ ├── hg005_3x.bed
│ ├── hg005_coverage.mosdepth.global.dist.txt
│ ├── hg005_coverage.mosdepth.summary.txt
│ ├── hg005_coverage.per-base.bed.gz
│ ├── hg005_coverage.per-base.bed.gz.csi
│ ├── hg005_gm26107.mrna.grch38.bam
│ └── hg005_gm26107.mrna.grch38.bam.bai
├── happy
├── model
│ ├── model.ckpt.data-00000-of-00001
│ ├── model.ckpt.index
│ └── model.ckpt.meta
├── output
└── reference
├── GRCh38_no_alt_analysis_set.fasta
└── GRCh38_no_alt_analysis_set.fasta.fai
The command below will run the DeepVariant RNA-seq model and produce an output
VCF (output/out.vcf.gz
).
BIN_VERSION="1.4.0"
sudo docker run \
-v "$(pwd):$(pwd)" \
-w $(pwd) \
google/deepvariant:"${BIN_VERSION}" \
run_deepvariant \
--model_type=WES \
--customized_model=model/model.ckpt \
--ref=reference/GRCh38_no_alt_analysis_set.fasta \
--reads=data/hg005_gm26107.mrna.grch38.bam \
--output_vcf=output/HG005.output.vcf.gz \
--num_shards=$(nproc) \
--regions=data/chr20_CDS_3x.bed \
--make_examples_extra_args="split_skip_reads=true,channel_list='BASE_CHANNELS'" \
--intermediate_results_dir output/intermediate_results_dir
Flag summary
--model_type
- Sets the model and options, but we will override the model with--customized model
.--customized_model
- Points to a model trained using RNA-seq data.--ref
- Specifies the reference sequence.--reads
- Specifies the input bam file.--output_vcf
- Specifies the output variant file.--num_shards
- Sets the number of shards to the number of available processors ($(nproc)
). This is used to perform parallelization.--regions
- Restricts analysis to 3x chr20 CDS regions only.--make_examples_extra_args=
- Passes additional arguments to make_examples.split_skip_reads=true
- Important! This flag is critical for RNA-seq variant calling to work properly. It enables RNA-seq data to be processed efficiently.--channel_list='BASE_CHANNELS'
- Sets the channel list for the RNA-seq model.
--intermediate_results_dir
- Outputs results to an intermediate directory.
For running on GPU machines, or using Singularity instead of Docker, see Quick Start.
sudo docker run \
-v $(pwd):$(pwd) \
-w $(pwd) \
jmcdani20/hap.py:v0.3.12 /opt/hap.py/bin/hap.py \
benchmark/HG005_GRCh38_1_22_v4.2.1_benchmark.vcf.gz \
output/HG005.output.vcf.gz \
-f benchmark/chr20_CDS_3x.benchmark_regions.bed \
-r reference/GRCh38_no_alt_analysis_set.fasta \
-o happy/happy.output \
--engine=vcfeval \
--pass-only \
--target-regions=data/chr20_CDS_3x.bed \
--threads=$(nproc)
Flag summary
-f
- Sets the benchmark regions (regions of interest that we want to benchmark.)-r
- Sets the reference genome.-o
- Specifies the output location.--engine
- Sets the variant comparison engine. See hap.py documentation for details.--pass-only
- Restricts benchmarking to variants that have passed all filters.--target-regions
- Restricts analysis to given regions only.--threads
- Level of parallelization to use.
Output:
The above command should output the following results:
Type Filter TRUTH.TOTAL TRUTH.TP TRUTH.FN QUERY.TOTAL QUERY.FP QUERY.UNK FP.gt FP.al METRIC.Recall METRIC.Precision METRIC.Frac_NA METRIC.F1_Score TRUTH.TOTAL.TiTv_ratio QUERY.TOTAL.TiTv_ratio TRUTH.TOTAL.het_hom_ratio QUERY.TOTAL.het_hom_ratio
INDEL ALL 9 6 3 11 1 4 1 0 0.666667 0.857143 0.363636 0.75000 NaN NaN 0.800000 1.200000
INDEL PASS 9 6 3 11 1 4 1 0 0.666667 0.857143 0.363636 0.75000 NaN NaN 0.800000 1.200000
SNP ALL 287 275 12 314 6 33 3 2 0.958188 0.978648 0.105096 0.96831 4.125 3.984127 1.141791 1.093333
SNP PASS 287 275 12 314 6 33 3 2 0.958188 0.978648 0.105096 0.96831 4.125 3.984127 1.141791 1.093333