Skip to main content
Log in

Role of stochastic model on GPS integer ambiguity resolution success rate

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

An important step in the high-precision GPS positioning is double-difference integer ambiguity resolution (IAR). The fraction or percentage of success among a number of integer ambiguity fixing is called the success rate. We investigate the ambiguity resolution success rate for the GPS observations for two cases, namely a nominal and a realistic stochastic model of the GPS observables. In principle, one would expect to have higher reliability on IAR success rates if a realistic GPS observables stochastic model is employed. The GPS geometry-based observation model is employed in which a more realistic stochastic model of GPS observables is determined using the least-squares variance component estimation. Two short and one GPS long baseline datasets and one simulated dataset are employed to evaluate the efficacy of the proposed algorithm. The results confirm that a more realistic stochastic model can significantly improve the IAR success rate on individual frequencies, either on L1 or on L2. An improvement of 25 % was achieved to the empirical success rate results. The results are of interest for many applications in which single-frequency observations can be used. This includes applications like attitude determination using single frequency single epoch of GPS observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Amiri-Simkooei AR (2007) Least-squares variance component estimation: theory and GPS applications. Ph.D. thesis, Delft University of Technology, Delft, The Netherlands

  • Amiri-Simkooei AR (2009) Noise in multivariate GPS position time series. J Geod Berlin 83(2):175–187

    Article  Google Scholar 

  • Amiri-Simkooei AR (2013) Application of least squares variance component estimation to errors-in-variables models. J Geod Berlin 87:935–944

    Article  Google Scholar 

  • Amiri-Simkooei AR, Tiberius CCJM (2007) Assessing receiver noise using GPS short baseline time series. GPS Solut 11(1):21–35

    Article  Google Scholar 

  • Amiri-Simkooei AR, Tiberius CCJM, Teunissen PJG (2007) Assessment of noise in GPS coordinate time series: methodology and results. J Geophys Res 112(B07413)

  • Amiri-Simkooei AR, Teunissen PJG, Tiberius CCJM (2009) Application of least-squares variance component estimation to GPS observables. J Surv Eng 135(4):149–160

    Article  Google Scholar 

  • Amiri-Simkooei AR, Zangeneh-Nejad F, Asgari J (2013) Least-squares variance component estimation applied to GPS geometry-based observation model. J Surv Eng 139(4):176–187

    Article  Google Scholar 

  • Euler HJ, Goad C (1991) On optimal filtering of GPS dual frequency observations without using orbit information. Bull Geod 65:130–143

    Article  Google Scholar 

  • Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS global navigation satellite systems—GPS, GLONASS, Galileo & more. Springer, New York

    Google Scholar 

  • Jazaeri S, Amiri-Simkooei AR, Sharifi MA (2012) Fast integer least-squares estimation for GNSS high-dimensional ambiguity resolution using lattice theory. J Geod Berlin 86(2):123–136

    Article  Google Scholar 

  • Jazaeri S, Amiri-Simkooei AR, Sharifi MA (2013) Fast GNSS ambiguity resolution by ant colony optimization. Surv Rev 45:190–196

    Article  Google Scholar 

  • Jazaeri S, Amiri-Simkooei AR, Sharifi MA (2014a) On lattice reduction algorithms for solving weighted integer least-squares problems: comparative study. GPS Solut 18(1):105–114

    Article  Google Scholar 

  • Jazaeri S, Amiri-Simkooei AR, Sharifi MA (2014b) Modified weighted integer least squares estimation for GNSS integer ambiguity resolution. Surv Rev 46:112–121

    Article  Google Scholar 

  • Jonkman NF (1997) Integer GPS-ambiguity estimation without the receiver-satellite geometry. MGP-Series, No. 18, Delft University of Technology

  • Joosten P, Irsigler M (2003) GNSS ambiguity resolution in the presence of multipath. In the European navigation conference GNSS 2002, Graz, Austria

  • Joosten P, Pany T, Winkel J (2002) The impact of unmodelled multipath on ambiguity resolution. ION GPS 2002:953–961

    Google Scholar 

  • Khodabandeh A, Amiri-Simkooei AR, Sharifi MA (2012) GPS position time-series analysis based on asymptotic normality of M-estimation. J Geod Berlin 86:15–33

    Article  Google Scholar 

  • Koch KR (1978) Schätzung von varianzkomponenten. Allgemeine Vermessungs-Nachrichten 85:264–269

    Google Scholar 

  • Koch KR (1986) Maximum likelihood estimate of variance components. Boll Geod Sci Affini 60:329–338 (Ideas by A.J. Pope)

    Article  Google Scholar 

  • Koch KR (1999) Parameter estimation and hypothesis testing in linear models. Springer, Berlin

    Book  Google Scholar 

  • Kubo N, Yasuda A (2003) How multipath error influences on ambiguity resolution. In Proceedings of ION GNSS 2003, Portland

  • Rao CR (1971) Estimation of variance and covariance components—MINQUE theory. J Multivar Anal 1(3):257–275

    Article  Google Scholar 

  • Teunissen PJG (1988) Towards a least-squares framework for adjusting and testing of both functional and stochastic model. Internal research memo, Geodetic Computing Centre, Delft. A reprint of original 1988 report is also available in 2004, No. 26

  • Teunissen PJG (1993) Least squares estimation of the integer GPS ambiguities. Proc., IAG General Meeting, Series No. 6, Delft Geodetic Computing Centre

  • Teunissen PJG (1994) A new method for fast carrier phase ambiguity estimation. In: Proceedings of the IEEE PLANS’94, Las Vegas, NV, 11–15 April 1994, pp 562–573

  • Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geod Berlin 70(1–2):65–83

    Article  Google Scholar 

  • Teunissen PJG (1997) A canonical theory for short GPS baselines, parts I–IV. J Geod Berlin 71:320–336, 389–401, 486–501, 513–525

  • Teunissen PJG (1998) Success probability of integer GPS ambiguity rounding and bootstrapping. J Geod Berlin 72:606–612

    Article  Google Scholar 

  • Teunissen PJG (1999) An optimality property of the integer least squares estimator. J Geod Berlin 73(11):587–593

    Article  Google Scholar 

  • Teunissen PJG (2000a) ADOP based upperbounds for the bootstrapped and the least-squares ambiguity success rates. Artif Satell 35(4):171–179

    Google Scholar 

  • Teunissen PJG (2000b) Adjustment theory: an introduction. VSSD: series on mathematical Geodesy and positioning. Delft University Press, Delft

    Google Scholar 

  • Teunissen PJG (2013) GNSS integer ambiguity validation: overview of theory and methods. In: Proceedings of the ION 2013 Pacific PNT Meeting, Honolulu, Hawaii, April 2013, pp 673–684

  • Teunissen PJG, Amiri-Simkooei AR (2008) Least-squares variance component estimation. J Geod Berlin 82(2):65–82

    Article  Google Scholar 

  • Teunissen PJG, Jonkman NF, Tiberius CCJM (1998) Weighting GPS dual frequency observations: bearing the cross of cross-correlation. GPS Solutions 2(2):28–37

    Article  Google Scholar 

  • Tiberius CCJM, Kenselaar F (2003) Variance component estimation and precise GPS positioning: case study. J Surv Eng 129(1):11–18

    Article  Google Scholar 

  • Verhagen S (2005) On the reliability of integer ambiguity resolution. Navigation 52(2):99–110

    Article  Google Scholar 

  • Verhagen S, Odijk D, Boon F, López-Almansa J (2007) Reliable multi-carrier ambiguity resolution in the presence of multipath. In: ION GNSS 2007, pp 339–350, Forth Worth, TX

  • Wang J, Satirapod C, Rizos C (2002) Stochastic assessment of GPS carrier phase measurements for precise static relative positioning. J Geod Berlin 76(2):95–104

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge constructive comments of the editor and two anonymous reviewers, which improved the presentation and quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzaneh Zangeneh-Nejad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri-Simkooei, A.R., Jazaeri, S., Zangeneh-Nejad, F. et al. Role of stochastic model on GPS integer ambiguity resolution success rate. GPS Solut 20, 51–61 (2016). https://doi.org/10.1007/s10291-015-0445-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-015-0445-5

Keywords

Navigation