Questions tagged [teaching]
For questions related to teaching mathematics. For questions in Mathematics Education as a scientific discipline there is also the tag mathematics-education. Note you may also ask your question on http://matheducators.stackexchange.com/.
262 questions
8
votes
2
answers
844
views
The ten most fundamental topics in geometric group theory
What are the ten most fundamental topics in geometric group theory?
This is a pedagogical question prompted by the fact that I am teaching geometric group theory to undergraduates. They are expected ...
16
votes
1
answer
969
views
Pedagogically intuitive reformulation of Zorn's Lemma for functional analysis
While teaching an applied functional analysis class, I’ve noticed that students often struggle to develop an intuitive understanding of Zorn’s lemma. It’s relatively straightforward to explain why ...
1
vote
0
answers
106
views
The proposition associated with a set
Given a set $U$ and a set $A \subseteq U$, is there an accepted symbol for the proposition $p$ over the universe $U$ such that for each $x \in U$, $p(x)$ is the assertion that $x \in A$? (The symbol $...
3
votes
2
answers
140
views
Accessible literature on fractional dimensions of subsets of $\mathbb R^n$
I am currently wondering whether it is realistically possible to choose the topic "Fractals and fractal dimensions" for a seminar aimed at undergraduate students in the 2nd semester, with ...
11
votes
6
answers
2k
views
Hard problems with an easy-to-understand answer
I am very interested by problem in mathematics which are difficult (go at least 10 years without a resolution, say) but which have a solution that is short and elementary.
In this video Launay gave an ...
4
votes
1
answer
182
views
Notation for weak derivatives
I remember that, as a student, I felt a bit uncomfortable because I had to use the same notation (say $f'$, $D^\alpha f$, $\frac{\partial f}{\partial x^j}$, $\nabla \cdot f$ etc...) for classical and ...
3
votes
0
answers
165
views
Suitability of formal type theory for mathematical thinking (vs. traditional set theory)
Type theory has advantages over set theory for the (computer) formalisation of mathematics, but has anybody who does mathematics with pen and paper found proof assistants or automated theorem provers, ...
4
votes
2
answers
287
views
Teaching suggestions for Kleene fixed point theorem
I will take over two lectures from a colleague in which we discuss fixed point theory in the context of complete partial orders, and culminates in showing the Kleene fixed point theorem (see f.e. ...
2
votes
1
answer
627
views
Does some published texbook take a particular approach (described here) to the transition from discrete to continuous probability distributions?
(I posted this question at matheducators.stackexchange.com and it seems to be considered an inappropriate question for that site. I don't understand why.)
Imagine an introductory probability course ...
12
votes
4
answers
929
views
Interesting examples of systems of linear differential equations with constant coefficients
In this paper, Gian-Carlo Rota wrote:
A lot of interesting systems with constant coefficients have been discovered in the last thirty years: in control, in economics, in signal
processing, even in ...
2
votes
1
answer
293
views
Examples of new results found via exams [closed]
I suspect that there have been many instances throughout history where a new proof of an existing result has been discovered by a student while taking an exam. Does anyone have an example of this?
53
votes
7
answers
8k
views
Zorn's lemma: old friend or historical relic?
It is often said that instead of proving a great theorem a mathematician's fondest dream is to prove a great lemma. Something like Kőnig's tree lemma, or Yoneda's lemma, or really anything from this ...
7
votes
1
answer
723
views
Alternate algorithms for Chinese remainder theorem
I was teaching Discrete this semester and set the students loose on a system of linear congruences. One of them came up with this solution. Say $$ x \equiv 1 \textrm{ mod } 3 $$ $$ x \equiv 3 \textrm{ ...
1
vote
1
answer
117
views
Resources on blended teaching and flipped classroom in undergraduate mathematics education [closed]
I'd like to learn about the implementation of "blended teaching" in general and "flipped classroom" in particular for the teaching of undergraduate mathematics. Can anyone ...
25
votes
2
answers
3k
views
What is the origin/history of the following very short definition of the Lebesgue integral?
Typical courses on real integration spend a lot of time defining the Lebesgue measure and then spend another lot of time defining the integral with respect to a measure. This is sometimes criticized ...