login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primorial - 1 prime indices: integers m such that the m-th primorial minus 1 is prime.
21

%I #80 Dec 17 2024 03:26:32

%S 2,3,5,6,13,24,66,68,167,287,310,352,564,590,620,849,1552,1849,67132,

%T 85586,234725,334023,435582,446895

%N Primorial - 1 prime indices: integers m such that the m-th primorial minus 1 is prime.

%C There are two versions of "primorial": this is using the definition in A002110. - _Robert Israel_, Dec 30 2014

%C As of 28 February 2012, the largest known primorial prime is A002110(85586) - 1 with 476311 digits, found by the PrimeGrid project (see link). - _Dmitry Kamenetsky_, Aug 11 2015

%H Chris K. Caldwell, <a href="https://t5k.org/primes/search.php?Description=%5E[[:digit:]]{1,}%23-1&amp;Style=HTML">Prime Pages: Database Search</a>

%H Chris K. Caldwell, <a href="https://t5k.org/top20/page.php?id=5">The top 20: primorial primes</a>

%H Sílvia Casacuberta, <a href="https://arxiv.org/abs/1906.07652">On the divisibility of binomial coefficients</a>, arXiv:1906.07652 [math.NT], 2019. Mentions this sequence.

%H Benny Lim, <a href="https://www.parabola.unsw.edu.au/2010-2019/volume-54-2018/issue-3/article/prime-numbers-generated-highly-composite-numbers">Prime Numbers Generated From Highly Composite Numbers</a>, Parabola (2018) Vol. 54, Issue 3.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IntegerSequencePrimes.html">Integer Sequence Primes</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimorialPrime.html">Primorial Prime</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Primorial_prime">Primorial prime</a>

%F a(n) = A000720(A006794(n)).

%F a(n) = primepi(A006794(n)).

%e The 6th primorial is A002110(6) = 2*3*5*7*11*13 = 30030, and 30030 - 1 = 30029 is a prime, so 6 is in the sequence.

%p P:= 1:

%p p:= 1:

%p count:= 0:

%p for n from 1 to 1000 do

%p p:= nextprime(p);

%p P:= P*p;

%p if isprime(P-1) then

%p count:= count+1;

%p A[count]:= n;

%p fi

%p od:

%p seq(A[i],i=1..count); # _Robert Israel_, Dec 25 2014

%t a057704[n_] :=

%t Flatten@Position[

%t Rest[FoldList[Times, 1, Prime[Range[n]]]] - 1, _Integer?PrimeQ]; a057704[500] (* _Michael De Vlieger_, Dec 25 2014 *)

%o (PARI) lista(nn) = {s = 1; for(k=1, nn, s *= prime(k); if(ispseudoprime(s - 1), print1(k, ", ")); ); } \\ _Altug Alkan_, Dec 08 2015

%o (PARI) is(n) = ispseudoprime(prod(k=1, n, prime(k)) - 1); \\ _Altug Alkan_, Dec 08 2015

%Y Cf. A006794 (Primorial -1 primes: Primes p such that -1 + product of primes up to p is prime).

%Y Cf. A057705, A014545, A005234, A002110, A057706.

%K nonn,more

%O 1,1

%A _Labos Elemer_, Oct 24 2000

%E Corrected by Holzer Werner, Nov 28 2002

%E a(19)-a(20) from _Eric W. Weisstein_, Dec 08 2015 (Mark Rodenkirch confirms based on saved log files that all p < 700,000 have been tested)

%E a(21) from _Jeppe Stig Nielsen_, Oct 19 2021

%E a(22)-a(24) from _Jeppe Stig Nielsen_, Dec 16 2024