login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a003027 -id:a003027
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of weakly connected digraphs with n unlabeled nodes.
(Formerly M2067)
+10
25
1, 2, 13, 199, 9364, 1530843, 880471142, 1792473955306, 13026161682466252, 341247400399400765678, 32522568098548115377595264, 11366712907233351006127136886487, 14669074325902449468573755897547924182
OFFSET
1,2
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 124 and 241.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Alexander G. Ginsberg, Firing-Rate Models in Computational Neuroscience: New Applications and Methodologies, Ph. D. Dissertation, Univ. Michigan, 2023. See p. 7.
Martin Golubitsky and Yangyang Wang, Infinitesimal homeostasis in three-node input-output networks, Journal of Mathematical Biology (2020) Vol. 80, 1163-1185.
A. Iványi, Leader election in synchronous networks, Acta Univ. Sapientiae, Mathematica, 5, 2 (2013) 54-82.
X. Li, D. S. Stones, H. Wang, H. Deng, X. Liu and G. Wang, NetMODE: Network Motif Detection without Nauty, PLoS ONE 7(12): e50093. doi:10.1371/journal.pone.0050093. - From N. J. A. Sloane, Feb 02 2013
Eric Weisstein's World of Mathematics, Weakly Connected Digraph
FORMULA
a(n) = (1/n)*Sum_{d|n} mu(n/d)*A003084(d), where mu is Moebius function.
Inverse Euler transform of A000273. - Andrew Howroyd, Dec 27 2021
MAPLE
# The function EulerInvTransform is defined in A358451.
a := EulerInvTransform(A000273):
seq(a(n), n = 1..13); # Peter Luschny, Nov 21 2022
MATHEMATICA
Needs["Combinatorica`"]; d[n_] := GraphPolynomial[n, x, Directed] /. x -> 1; max = 13; se = Series[ Sum[a[n]*x^n/n, {n, 1, max}] - Log[1 + Sum[ d[n]*x^n, {n, 1, max}]], {x, 0, max}]; sol = SolveAlways[ se == 0, x]; Do[ A003084[n] = a[n] /. sol[[1]], {n, 1, max}]; ClearAll[a, d]; a[n_] := (1/n)*Sum[ MoebiusMu[ n/d ] * A003084[d], {d, Divisors[n]} ]; Table[ a[n], {n, 1, max}] (* Jean-François Alcover, Feb 01 2012, after formula *)
terms = 13;
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[2*GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[v - 1];
d[n_] := (s = 0; Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]} ]; s/n!);
A003084 = CoefficientList[Log[Sum[d[n] x^n, {n, 0, terms+1}]] + O[x]^(terms + 1), x] Range[0, terms] // Rest;
a[n_] := (1/n)*Sum[MoebiusMu[n/d] * A003084[[d]], {d, Divisors[n]}];
Table[a[n], {n, 1, terms}] (* Jean-François Alcover, Aug 30 2019, after Andrew Howroyd in A003084 *)
PROG
(Python)
from functools import lru_cache
from itertools import product, combinations
from fractions import Fraction
from math import prod, gcd, factorial
from sympy import mobius, divisors
from sympy.utilities.iterables import partitions
def A003085(n):
@lru_cache(maxsize=None)
def b(n): return int(sum(Fraction(1<<sum(p[r]*p[s]*gcd(r, s)<<1 for r, s in combinations(p.keys(), 2))+sum(r*(q*r-1) for q, r in p.items()), prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n)))
@lru_cache(maxsize=None)
def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1, n))
return sum(mobius(n//d)*c(d) for d in divisors(n, generator=True))//n # Chai Wah Wu, Jul 05 2024
CROSSREFS
Row sums of A054733.
Column sums of A350789.
The labeled case is A003027.
Cf. A000273, A003084, A035512 (strongly connected).
KEYWORD
nonn,nice
EXTENSIONS
More terms from Vladeta Jovovic, Jan 09 2000
STATUS
approved
Triangular array T(n,k) giving number of weakly connected digraphs with n labeled nodes and k arcs (n >= 1, 0 <= k <= n(n-1)).
+10
11
1, 0, 2, 1, 0, 0, 12, 20, 15, 6, 1, 0, 0, 0, 128, 432, 768, 920, 792, 495, 220, 66, 12, 1, 0, 0, 0, 0, 2000, 11104, 33880, 73480, 123485, 166860, 184426, 167900, 125965, 77520, 38760, 15504, 4845, 1140, 190, 20, 1, 0, 0, 0, 0, 0, 41472, 337920, 1536000, 5062080
OFFSET
1,3
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..2680 (rows 1..20)
R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 [math.CO], 2017; Table 76.
FORMULA
E.g.f.: 1+log( Sum_{n >= 0, k >= 0} binomial(n*(n-1), k)*x^n/n!*y^k ).
EXAMPLE
1;
0, 2, 1;
0, 0, 12, 20, 15, 6, 1;
0, 0, 0, 128, 432, 768, 920, 792, 495, 220, 66, 12, 1;
0, 0, 0, 0, 2000, 11104, 33880, 73480, 123485, 166860, 184426, 167900, ...;
0, 0, 0, 0, 0, 41472, 337920,1536000,5062080,.. ;
0, 0, 0, 0, 0, 0, 1075648,...
MATHEMATICA
nn=7; s=Sum[(1+y)^(n^2-n) x^n/n!, {n, 0, nn}]; Range[0, nn]!CoefficientList[Series[Log[ s]+1, {x, 0, nn}], {x, y}]//Grid (* returns triangle indexed from n = 0, Geoffrey Critzer, Oct 07 2012 *)
PROG
(PARI) row(n)={Vecrev(n!*polcoef(1 + log(sum(k=0, n, (1+y)^(k*(k-1))*x^k/k!, O(x*x^n))), n))}
{ for(n=0, 5, print(row(n))) } \\ Andrew Howroyd, Jan 11 2022
CROSSREFS
Cf. A003027 (row sums), A054733 (unlabeled case), A057273 (strongly connected), A097629 (diagonal), A123554 (not necessarily connected).
KEYWORD
easy,nonn,tabf
AUTHOR
Vladeta Jovovic, Jul 12 2001
STATUS
approved
Number of digraphs on n labeled nodes with a source.
(Formerly M3157)
+10
10
1, 3, 51, 3614, 991930, 1051469032, 4366988803688, 71895397383029040, 4719082081411731363408, 1237678715644664931691596416, 1297992266840866792981316221144960, 5444416466164313011147841248189209354496, 91343356480627224177654291875698256656613808896
OFFSET
1,2
COMMENTS
Here a source is a node that is connected by a directed path to every other node in the digraph (but does not necessarily have indegree zero). - Geoffrey Critzer, Apr 14 2023
REFERENCES
V. Jovovic and G. Kilibarda, Enumeration of labeled initially-finally connected digraphs, Scientific review, Serbian Scientific Society, 19-20 (1996) 237-247.
R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
V. Jovovic and G. Kilibarda, Enumeration of labeled quasi-initially connected digraphs, Discrete Math., 224 (2000), 151-163.
PROG
(PARI) Initially(12) \\ See A057274. - Andrew Howroyd, Jan 11 2022
CROSSREFS
The unlabeled version is A051421.
Row sums of A057274.
Column k=1 of A361579.
KEYWORD
nonn,easy,nice
EXTENSIONS
Corrected and extended by Vladeta Jovovic, Goran Kilibarda
Terms a(12) and beyond from Andrew Howroyd, Jan 11 2022
STATUS
approved
Number of weakly connected oriented graphs on n labeled nodes.
+10
10
1, 2, 20, 624, 55248, 13982208, 10358360640, 22792648882176, 149888345786341632, 2952810709943411146752, 174416705255313941476193280, 30901060796613886817249881227264, 16422801513633911416125344647746244608, 26183660776604240464418800095675915958222848
OFFSET
1,2
COMMENTS
The triangle of oriented labeled graphs on n>=1 nodes with 1<=k<=n components and row sums A047656 starts:
1;
2, 1;
20, 6, 1;
624, 92, 12, 1;
55248, 3520, 260, 20, 1;
13982208, 354208, 11880, 580, 30, 1; - R. J. Mathar, Apr 29 2019
LINKS
V. A. Liskovets, Some easily derivable sequences, J. Integer Sequences, 3 (2000), #00.2.2.
FORMULA
E.g.f.: log( Sum_{n >= 0} 3^binomial(n, 2)*x^n/n! ). - Vladeta Jovovic, Feb 14 2003
MATHEMATICA
nn=20; s=Sum[3^Binomial[n, 2]x^n/n!, {n, 0, nn}];
Drop[Range[0, nn]! CoefficientList[Series[Log[s]+1, {x, 0, nn}], x], 1] (* Geoffrey Critzer, Oct 22 2012 *)
PROG
(PARI) N=20; x='x+O('x^N); Vec(serlaplace(log(sum(k=0, N, 3^binomial(k, 2)*x^k/k!)))) \\ Seiichi Manyama, May 18 2019
(Magma)
m:=30;
f:= func< x | (&+[3^Binomial(n, 2)*x^n/Factorial(n) : n in [0..m+3]]) >;
R<x>:=PowerSeriesRing(Rationals(), m);
Coefficients(R!(Laplace( Log(f(x)) ))); // G. C. Greubel, Apr 28 2023
(SageMath)
m=30
def f(x): return sum(3^binomial(n, 2)*x^n/factorial(n) for n in range(m+4))
def A054941_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( log(f(x)) ).egf_to_ogf().list()
a=A054941_list(40); a[1:] # G. C. Greubel, Apr 28 2023
CROSSREFS
Row sums of A350732.
The unlabeled version is A086345.
Cf. A001187 (graphs), A003027 (digraphs), A350730 (strongly connected).
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 24 2000
EXTENSIONS
More terms from Vladeta Jovovic, Feb 14 2003
STATUS
approved
Number of connected labeled relations.
+10
9
1, 2, 12, 432, 61344, 32866560, 68307743232, 561981464819712, 18437720675374485504, 2417519433343618432696320, 1267602236528793479228867346432, 2658428102191640176274135259655176192, 22300681394917309655766001890404571062206464
OFFSET
0,2
COMMENTS
a(n) is the number of binary relations R on {1, 2, ..., n} such that the reflexive, symmetric, and transitive closure of R is the trivial relation.
FORMULA
E.g.f.: 1+log( Sum_{n >= 0} 2^(n^2)*x^n/n! ).
MAPLE
a:= n-> n!*coeff(series(1+log(add(2^(i^2)*x^i/i!, i=0..n)), x, n+1), x, n):
seq(a(n), n=0..30); # Alois P. Heinz, Feb 16 2011
MATHEMATICA
nn = 20; a = Sum[2^(n^2) x^n/n!, {n, 0, nn}]; Range[0, nn]! CoefficientList[Series[Log[a] + 1, {x, 0, nn}], x] (* Geoffrey Critzer, Oct 17 2011 *)
PROG
(PARI) v=Vec(1+log(sum(n=0, 10, 2^(n^2)*x^n/n!))); for(i=1, #v, v[i]*=(i-1)!); v \\ Charles R Greathouse IV, Feb 14 2011
CROSSREFS
Cf. A003027.
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Jul 12 2001
STATUS
approved
Number of digraphs with a source and a sink on n labeled nodes.
+10
7
1, 3, 48, 3424, 962020, 1037312116, 4344821892264, 71771421308713624, 4716467927380427847264, 1237465168798883061207535456, 1297923989772809185944542332007104, 5444330658513426322624322033259452670016, 91342931436147421630261703458729460990513248512
OFFSET
1,2
COMMENTS
Here a source is defined to be a node which has a directed path to all other nodes and a sink to be a node to which all other nodes have a directed path. A digraph with a source and a sink can also be described as initially-finally connected. - Andrew Howroyd, Jan 16 2022
REFERENCES
V. Jovovic, G. Kilibarda, Enumeration of labeled initially-finally connected digraphs, Scientific review, Serbian Scientific Society, 19-20 (1996), p. 244.
LINKS
Sean A. Irvine, Java program (github)
V. Jovovic and G. Kilibarda, Enumeration of labeled quasi-initially connected digraphs, Discrete Math., 224 (2000), 151-163.
R. W. Robinson, Counting digraphs with restrictions on the strong components, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.
PROG
(PARI) InitFinally(15) \\ See A057271. - Andrew Howroyd, Jan 16 2022
CROSSREFS
The unlabeled version is A049531.
Row sums of A057271.
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Goran Kilibarda
EXTENSIONS
Terms a(12) and beyond from Andrew Howroyd, Jan 16 2022
STATUS
approved
Number of unilaterally connected digraphs with n labeled nodes.
(Formerly M3156)
+10
6
1, 3, 48, 3400, 955860, 1034141596, 4340689156440, 71756043154026904, 4716284688998245793376, 1237457313794197125403483936, 1297922676419612772784598299454784, 5444329780242560941321703550018388707904, 91342929096228825123968637168641318872709897472
OFFSET
1,2
REFERENCES
V. Jovovic, G. Kilibarda, Enumeration of labeled initially-finally connected digraphs, Scientific review, Serbian Scientific Society, 19-20 (1996), 237-247.
R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
V. Jovovic and G. Kilibarda, Enumeration of labeled quasi-initially connected digraphs, Discrete Math., 224 (2000), 151-163.
PROG
(PARI) Unilaterally(12) \\ See A057275. - Andrew Howroyd, Jan 19 2022
CROSSREFS
The unlabeled version is A003088.
Row sums of A057275.
KEYWORD
nonn,nice,easy
EXTENSIONS
Corrected and extended by Vladeta Jovovic, Goran Kilibarda
Terms a(12) and beyond from Andrew Howroyd, Jan 11 2022
STATUS
approved
Number of quasi-initially connected digraphs with n labeled nodes.
+10
6
1, 3, 54, 3804, 1022320, 1065957628, 4389587378792, 72020744942708040, 4721708591209396542528, 1237892622263984613044109216, 1298060581376190776821670648395840
OFFSET
1,2
COMMENTS
We say that a node v of a digraph is a quasi-source iff for every other node u there exists directed path from u to v or from v to u. A digraph with at least one quasi-source is called quasi-initially connected.
LINKS
Sean A. Irvine, Java program (github)
V. Jovovic and G. Kilibarda, Enumeration of labeled quasi-initially connected digraphs, Discrete Math., 224 (2000), 151-163.
FORMULA
The recurrence formulas are too long to be presented here.
CROSSREFS
Row sums of A057272.
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Goran Kilibarda
STATUS
approved
Triangular array read by rows. T(n,k) is the number of digraphs with n labeled nodes having exactly k undirected (or weak) components, n >= 1, 1 <= k <= n.
+10
4
1, 3, 1, 54, 9, 1, 3834, 243, 18, 1, 1027080, 20790, 675, 30, 1, 1067308488, 6364170, 67635, 1485, 45, 1, 4390480193904, 7543111716, 23031540, 171045, 2835, 63, 1, 72022346388181584, 35217115838604, 30469951764, 63580545, 370440, 4914, 84, 1
OFFSET
1,2
COMMENTS
The Bell transform of A003027(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 18 2016
LINKS
FORMULA
E.g.f. for column k: log(A(x))^k/k! where A(x) is the e.g.f. for A053763.
EXAMPLE
1
3 1
54 9 1
3834 243 18 1
1027080 20790 675 30 1
MAPLE
T:= (n, k)-> coeff(series(log(add(2^(i^2-i) *x^i/i!, i=0..n))^k /k!,
x, n+1), x, n) *n!:
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, May 01 2011
MATHEMATICA
a= Sum[4^Binomial[n, 2]x^n/n!, {n, 0, 10}];
Transpose[Map[Drop[#, 1] &, Table[Range[0, 10]! CoefficientList[Series[Log[a]^n/n!, {x, 0, 10}], x], {n, 1, 10}]]] // Grid
PROG
(Sage) # uses[bell_matrix from A264428, A003027]
# Adds a column 1, 0, 0, 0, ... at the left side of the triangle.
bell_matrix(lambda n: A003027(n+1), 10) # Peter Luschny, Jan 18 2016
CROSSREFS
Column 1 = A003027, row sums = A053763, lower diagonal = A045943.
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, May 01 2011
EXTENSIONS
Name clarified by Andrew Howroyd, Jan 11 2022
STATUS
approved
Number of disconnected labeled digraphs with n nodes.
+10
2
0, 1, 10, 262, 21496, 6433336, 7566317200, 35247649746352, 648839620390462336, 47230175230392839683456, 13617860445102311268975051520, 15577054031612736747163633737901312
OFFSET
1,3
LINKS
FORMULA
a(n) = 2^(n*(n-1)) - A003027(n).
CROSSREFS
The unlabeled case is A054590.
Cf. A003027, A053763 (not necessarily connected), A054592.
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Apr 15 2000
STATUS
approved

Search completed in 0.012 seconds