Advancements in Artificial Intelligence for Fetal Neurosonography: A Comprehensive Review
- PMID: 39337113
- PMCID: PMC11432922
- DOI: 10.3390/jcm13185626
Advancements in Artificial Intelligence for Fetal Neurosonography: A Comprehensive Review
Abstract
The detailed sonographic assessment of the fetal neuroanatomy plays a crucial role in prenatal diagnosis, providing valuable insights into timely, well-coordinated fetal brain development and detecting even subtle anomalies that may impact neurodevelopmental outcomes. With recent advancements in artificial intelligence (AI) in general and medical imaging in particular, there has been growing interest in leveraging AI techniques to enhance the accuracy, efficiency, and clinical utility of fetal neurosonography. The paramount objective of this focusing review is to discuss the latest developments in AI applications in this field, focusing on image analysis, the automation of measurements, prediction models of neurodevelopmental outcomes, visualization techniques, and their integration into clinical routine.
Keywords: artificial intelligence; convolutional neural networks; fetal; machine learning; neurosonography; prenatal; ultrasound.
Conflict of interest statement
The authors declare no conflict of interest.
Similar articles
-
Artificial intelligence in obstetric ultrasound: A scoping review.Prenat Diagn. 2023 Aug;43(9):1176-1219. doi: 10.1002/pd.6411. Epub 2023 Jul 28. Prenat Diagn. 2023. PMID: 37503802 Review.
-
Role of magnetic resonance imaging in fetuses with mild or moderate ventriculomegaly in the era of fetal neurosonography: systematic review and meta-analysis.Ultrasound Obstet Gynecol. 2019 Aug;54(2):164-171. doi: 10.1002/uog.20197. Epub 2019 Jul 11. Ultrasound Obstet Gynecol. 2019. PMID: 30549340
-
Fetal Neurosonogaphy: Ultrasound and Magnetic Resonance Imaging in Competition.Ultraschall Med. 2016 Dec;37(6):555-557. doi: 10.1055/s-0042-117142. Epub 2016 Dec 15. Ultraschall Med. 2016. PMID: 27978593 English.
-
The utilization of artificial intelligence in enhancing 3D/4D ultrasound analysis of fetal facial profiles.J Perinat Med. 2024 Oct 10;52(9):899-913. doi: 10.1515/jpm-2024-0347. Print 2024 Nov 26. J Perinat Med. 2024. PMID: 39383043 Review.
-
Artificial intelligence as a new answer to old challenges in maternal-fetal medicine and obstetrics.Technol Health Care. 2024;32(3):1273-1287. doi: 10.3233/THC-231482. Technol Health Care. 2024. PMID: 38073356 Review.
References
-
- Morris J.K., Wellesley D.G., Barisic I., Addor M.-C., Bergman J.E.H., Braz P., Cavero-Carbonell C., Draper E.S., Gatt M., Haeusler M., et al. Epidemiology of congenital cerebral anomalies in Europe: A multicentre, population-based EUROCAT study. Arch. Dis. Child. 2019;104:1181–1187. doi: 10.1136/archdischild-2018-316733. - DOI - PubMed
-
- Tagliabue G., Tessandori R., Caramaschi F., Fabiano S., Maghini A., Tittarelli A., Vergani D., Bellotti M., Pisani S., Gambino M.L., et al. Descriptive epidemiology of selected birth defects, areas of Lombardy, Italy, 1999. Popul. Health Metr. 2007;5:4. doi: 10.1186/1478-7954-5-4. - DOI - PMC - PubMed
-
- Paladini D., Malinger G., Birnbaum R., Monteagudo A., Pilu G., Salomon L.J., Timor-Tritsch I.E. ISUOG Practice Guidelines (updated): Sonographic examination of the fetal central nervous system. Part 2: Performance of targeted neurosonography. Ultrasound Obstet. Gynecol. 2021;57:661–671. doi: 10.1002/uog.23616. - DOI - PubMed
-
- Snoek R., Albers M.E.W.A., Mulder E.J.H., Lichtenbelt K.D., de Vries L.S., Nikkels P.G.J., Cuppen I., Pistorius L.R., Manten G.T.R., de Heus R. Accuracy of diagnosis and counseling of fetal brain anomalies prior to 24 weeks of gestational age. J. Matern. Neonatal Med. 2018;31:2188–2194. doi: 10.1080/14767058.2017.1338258. - DOI - PubMed
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources