Prijeđi na sadržaj

Cijeli broj

Izvor: Wikipedija
(Preusmjereno sa stranice Gausovi celi brojevi)

Skup cijelih brojeva je skup koji obuhvata sve prirodne brojeve, nulu (0), kao sve negativne brojeve (prirodni brojevi sa predznakom -). Cijeli brojevi ne smiju imati decimalni nastavak tj. pri pisanju tog broja u vidu razlomka, nazivnik mora biti 1. Oznaka skupa cijelih brojeva je Z. Svi prirodni brojevi se nazivaju pozitivni cijeli brojevi, 0 je neutralan broj, a brojevi manji od 0 se zovu negativni cijeli brojevi. Negativni brojevi imaju ispred predznak minus (-) i oni su manji od 0. Pozitivni brojevi imaju predznak plus(+), koji se ne piše i oni su uvijek veći od 0. U skupu cijelih brojeva, ne postoji najmanji ili najveći broj,nego samo lud broj. To je broj npr.9 kao i svaki drugi broj deljiv trojkom.

Apsolutna vrijednost

[uredi | uredi kod]

Apsloutna vrijednost je vrijednost broja bez njegovog predznaka tj. apslutna vrijednost mijenja negativnu vrijednost u pozitivnu. Ako je vrijednost već pozitivna, onda se ona ne mijenja. Apslutna vrijednost uvijek mora biti nenegativaan broj. Stavljajući se pod modul (| |), izračunava se apsloutna vrijednost datog broja. Na primjer, apsloutna vrijednost broja 5 je 5, a broj -5 je 5.

Kod pozitivnih brojeva važi pravilo: Što je apsloutna vrijednost veća to je i broj veći.

Kod negativnih brojeva važi pravilo: Što je apsolutna vrijednost veća to je broj manji.

Znači

1<2<3<4<5...

-1>-2>-3>-4>-5...

Najmanji pozitivan cijeli broj je 1, a najveći ne postoji. Najmanji negativan cijeli broj ne postoji, a najveći je -1.

Predznak ispred zagrade

[uredi | uredi kod]

Ukoliko ispred zagrade stoji plus (ili ništa) onda se zagrada briše i nastavlja se računanje kao da nije ni bilo zagrade. Ukoliko ispred zagrade stoji minus, zagrada se briše i svi znakovi u zagradi se mijenjaju. (Ako je bio minus onda će biti plus, a ako je bio plus ispred broja, onda će biti minus).

Na primjer:

4+(8-3+2)-1=4+8-3+2-1=10

4-(8-3+2)-1=4-8+3-2-1=-4

Računanje sa negativnim cijelim brojevima

[uredi | uredi kod]

Ako se treaju sabrati dva negativna cijela broja, onda im se saberu apsolutne vrijednosti, i ispred tog zbira se stavi predznak minus (-).

Ako se trebaju sabrati negativan i pozitivan cio broj, onda im se izračunaju apsolutne vrijednosti, zatim se oduzme manja od veće apsolutne vrijednosti i stavi se predznak veće apsolutne vrijednosti.

Kako bi se sebi olakšali računanje sa negativnim brojevima, te se riješili dva (pred)znaka, onda treba slijediti slijedeća tri pravila:

Minus(-) i minus(-) daju plus(+)

Plus(+) i plus(+) daju plus(+)

Minus(-) i plus(+) daju minus(-)

Znači, oduzimanje negativnog broja je sabiranje pozitivnog, sabiranje negativnog je oduzimanje pozitivnog itd.

Kod množenja i dijeljenja, ako su je paran broj faktora (ili djelilaca) istog predznaka, onda je rezultat pozitivan, a ako je broj istih predznaka neparan, onda je rezultat negativan.

Primjer

[uredi | uredi kod]

4+3=(+4)+(+3)=4+3=7

8-3=(+8)-(+3)=8-3=5

3-8=(+3)-(+8)=3-8=-5

-4+(-3)=-4-3=-7

3-(-8)=3+8=11

2*3=6

-2*(-3)=6

2*(-3)=-6

8:4=2

-8:(-4)=2

-8:4=-2