Jump to content

Monogenic field

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, a monogenic field is an algebraic number field K for which there exists an element a such that the ring of integers OK is the subring Z[a] of K generated by a. Then OK is a quotient of the polynomial ring Z[X] and the powers of a constitute a power integral basis.

In a monogenic field K, the field discriminant of K is equal to the discriminant of the minimal polynomial of α.

Examples

Examples of monogenic fields include:

if with a square-free integer, then where if d ≡ 1 (mod 4) and if d ≡ 2 or 3 (mod 4).
if with a root of unity, then Also the maximal real subfield is monogenic, with ring of integers .

While all quadratic fields are monogenic, already among cubic fields there are many that are not monogenic. The first example of a non-monogenic number field that was found is the cubic field generated by a root of the polynomial , due to Richard Dedekind.

References

  • Narkiewicz, Władysław (2004). Elementary and Analytic Theory of Algebraic Numbers (3rd ed.). Springer-Verlag. p. 64. ISBN 3-540-21902-1. Zbl 1159.11039.
  • Gaál, István (2002). Diophantine Equations and Power Integral Bases. Boston, MA: Birkhäuser Verlag. ISBN 978-0-8176-4271-6. Zbl 1016.11059.