Sanket Khandare’s Post

View profile for Sanket Khandare, graphic

Senior Vice President @ RIB | Technology & Architecture Strategist | Global AI Strategy Leader | Author of “Mastering Large Language Models”

*Mixture of Agents (MoA)* is an innovative way to boost Large Language Models’ performance by leveraging the strengths of multiple agents as a team. Layered Architecture: MoA arranges many LLMs in layered architecture, each layer composed of numerous individual agents(LLMs). Collaboration: These agents generate responses that are based on outputs from the previous layer’s agents. They repeatedly refine and enhance the last output. Diverse Insights: By integrating different capabilities and insights from various models, MoA achieves a more powerful combined model that is secure against diverse risks. Performance Boost: MoA outperforms standalone LLMs by a wide margin. For instance, it set a new benchmark with 65.1% on AlpacaEval 2.0 as against GPT-4 Omni at 57.5%, using only open-source models. In short, if we combine language modelers’ strengths then it results in increased efficiency and versatility. Here is a nice implementation of MOA by Together AI Github source: https://lnkd.in/dMCVRS3D #AI #LLM #LargeLanguageModels #MachineLearning

  • No alternative text description for this image
Kundan Patil

Data professional | AI ML | LLM | Gen ai

5mo

Is it similar to ensemble techniques like bootstrap aggregating (bagging)?

Mohit Singh

Machine Learning Engineer @ Omdena

5mo

Similar to custom bagging technique

Like
Reply
See more comments

To view or add a comment, sign in

Explore topics