Atmospheric radiative transfer codes

An atmospheric radiative transfer model, code, or simulator calculates radiative transfer of electromagnetic radiation through a planetary atmosphere.

Methods

edit

At the core of a radiative transfer model lies the radiative transfer equation that is numerically solved using a solver such as a discrete ordinate method or a Monte Carlo method. The radiative transfer equation is a monochromatic equation to calculate radiance in a single layer of the Earth's atmosphere. To calculate the radiance for a spectral region with a finite width (e.g., to estimate the Earth's energy budget or simulate an instrument response), one has to integrate this over a band of frequencies (or wavelengths). The most exact way to do this is to loop through the frequencies of interest, and for each frequency, calculate the radiance at this frequency. For this, one needs to calculate the contribution of each spectral line for all molecules in the atmospheric layer; this is called a line-by-line calculation. For an instrument response, this is then convolved with the spectral response of the instrument.

A faster but more approximate method is a band transmission. Here, the transmission in a region in a band is characterised by a set of pre-calculated coefficients (depending on temperature and other parameters). In addition, models may consider scattering from molecules or particles, as well as polarisation; however, not all models do so.

Applications

edit

Radiative transfer codes are used in broad range of applications. They are commonly used as forward models for the retrieval of geophysical parameters (such as temperature or humidity). Radiative transfer models are also used to optimize solar photovoltaic systems for renewable energy generation.[1] Another common field of application is in a weather or climate model, where the radiative forcing is calculated for greenhouse gases, aerosols, or clouds. In such applications, radiative transfer codes are often called radiation parameterization. In these applications, the radiative transfer codes are used in forward sense, i.e. on the basis of known properties of the atmosphere, one calculates heating rates, radiative fluxes, and radiances.

There are efforts for intercomparison of radiation codes. One such project was ICRCCM (Intercomparison of Radiation Codes in Climate Models) effort that spanned the late 1980s – early 2000s. The more current (2011) project, Continual Intercomparison of Radiation Codes, emphasises also using observations to define intercomparison cases. [2]

Table of models

edit
Name
Website
References
UV
Visible
Near IR
Thermal IR
mm/sub-mm
Microwave
line-by-line/band
Scattering
Polarised
Geometry
License
Notes
4A/OP [2] Archived 2011-07-21 at the Wayback Machine Scott and Chédin (1981)

[3]

No No Yes Yes No No band or line-by-line Yes Yes freeware
6S/6SV1 [3] Kotchenova et al. (1997)

[4]

No Yes Yes No No No band ? Yes non-Lambertian surface
ARTS [4] Eriksson et al. (2011)

[5]

Buehler et al. (2018) [6]

No No No Yes Yes Yes line-by-line Yes Yes spherical 1D, 2D, 3D GPL
BTRAM [5] Chapman et al. (2009)

[7]

No Yes Yes Yes Yes Yes line-by-line No No 1D,plane-parallel proprietary commercial
COART [6] Jin et al. (2006)

[8]

Yes Yes Yes Yes No No Yes No plane-parallel free
CMFGEN [7] Hillier (2020)[9] Yes Yes Yes Yes Yes Yes line-by-line Yes Yes 1D
CRM [8] No Yes Yes Yes No No band Yes No freely available Part of NCAR Community Climate Model
CRTM [9] Johnson et al. (2023)

[10]

v3.0 Yes Yes Yes Yes passive, active band Yes v3.0, UV/VIS 1D, Plane-Parallel Public Domain Fresnel ocean surfaces, Lambertian non-ocean surface
DART radiative transfer model [10] Gastellu-Etchegorry et al. (1996)

[11]

No Yes Yes Yes No No band Yes ? spherical 1D, 2D, 3D free for research with license non-Lambertian surface, landscape creation and import
DISORT [11] Stamnes et al. (1988)[12]

Lin et al. (2015)[13]

Yes Yes Yes Yes Yes radar Yes No plane-parallel or pseudo-spherical (v4.0) free with restrictions discrete ordinate, used by others
Eradiate [12] No Yes Yes No No No band or line-by-line Yes No plane-parallel, spherical LGPL 3D surface simulation
FARMS [13] Xie et al. (2016)

[14]

λ>0.2 µm Yes Yes No No No band Yes No plane-parallel free Rapidly simulating downwelling solar radiation at land surface for solar energy and climate research
Fu-Liou [14] Fu and Liou (1993)

[15]

No Yes Yes ? No No Yes ? plane-parallel usage online, source code available web interface online at [16]
FUTBOLIN Martin-Torres (2005)

[17]

λ>0.3 µm Yes Yes Yes λ<1000 µm No line-by-line Yes ? spherical or plane-parallel handles line-mixing, continuum absorption and NLTE
GENLN2 [15] Edwards (1992)

[18]

? ? ? Yes ? ? line-by-line ? ?
KARINE [16] Eymet (2005)

[19]

No No Yes No No ? ? plane-parallel GPL
KCARTA [17] ? ? Yes Yes ? ? line-by-line Yes ? plane-parallel freely available AIRS reference model
KOPRA [18] No No No Yes No No ? ?
LBLRTM [19] Clough et al. (2005)

[20]

Yes Yes Yes Yes Yes Yes line-by-line ? ?
LEEDR [20] Fiorino et al. (2014)

[21]

λ>0.2 µm Yes Yes Yes Yes Yes band or line-by-line Yes ? spherical US government software extended solar & lunar sources;

single & multiple scattering

LinePak [21] Gordley et al. (1994)

[22]

Yes Yes Yes Yes Yes Yes line-by-line No No spherical (Earth and Mars), plane-parallel freely available with restrictions web interface, SpectralCalc
libRadtran [22] Mayer and Kylling (2005)

[23]

Yes Yes Yes Yes No No band or line-by-line Yes Yes plane-parallel or pseudo-spherical GPL
MATISSE [23] Caillault et al. (2007)

[24]

No Yes Yes Yes No No band Yes ? proprietary freeware
MCARaTS [25] GPL 3-D Monte Carlo
MODTRAN [24] Berk et al. (1998)

[26]

<50,000 cm−1 (eq. to λ>0.2 µm) Yes Yes Yes Yes Yes band or line-by-line Yes ? proprietary commercial solar and lunar source, uses DISORT
MOSART [25] Cornette (2006)

[27]

λ>0.2 µm Yes Yes Yes Yes Yes band Yes No freely available
MSCART [26] Wang et al. (2017)[28]

Wang et al. (2019)[29]

Yes Yes Yes No No No Yes Yes 1D, 2D, 3D available on request
PICASO [27]link Batalha et al. (2019)[30] Mukherjee et al. (2022)[31] λ>0.3 μm Yes Yes Yes No No band or correlated-k Yes No plane-parallel, 1D, 3D GPL Github exoplanet, brown dwarf, climate modeling, phase-dependence
PUMAS [28] Yes Yes Yes Yes Yes Yes Line-by-line and correlated-k Yes Yes plane-parallel and pseudo-spherical Free/online tool
RADIS [29] Pannier (2018)

[32]

No No Yes No No No No 1D GPL
RFM [30] No No No Yes No No line-by-line No ? available on request MIPAS reference model based on GENLN2
RRTM/RRTMG [31] Mlawer, et al. (1997)

[33]

<50,000 cm−1 (eq. to λ>0.2 µm) Yes Yes Yes Yes >10 cm−1 ? ? free of charge uses DISORT
RTMOM [32][dead link] λ>0.25 µm Yes Yes λ<15 µm No No line-by-line Yes ? plane-parallel freeware
RTTOV [33] Saunders et al. (1999)

[34]

λ>0.4 µm Yes Yes Yes Yes Yes band Yes ? available on request
SASKTRAN [35] Bourassa et al.

(2008)[36]

Zawada et al.

(2015)[37]

Yes Yes Yes No No No line-by-line Yes Yes spherical 1D, 2D, 3D, plane-parallel available on request discrete and Monte Carlo options
SBDART [34] Ricchiazzi et al. (1998)

[38]

Yes Yes Yes ? No No Yes ? plane-parallel uses DISORT
SCIATRAN [35] Rozanov et al. (2005)

,[39]

Rozanov et al. (2014)

[40]

Yes Yes Yes No No No band or line-by-line Yes Yes plane-parallel or pseudo-spherical or spherical
SHARM Lyapustin (2002)

[41]

No Yes Yes No No No Yes ?
SHDOM [36] Evans (2006)

[42]

? ? Yes Yes ? ? Yes ?
σ-IASI [37] Amato et al. (2002)[43]

Liuzzi et al. (2017)[44]

No No Yes Yes Yes No band Yes No plane-parallel Available on request Semi-analytical Jacobians.
SMART-G [38] Ramon et al. (2019)

[45]

Yes Yes Yes No No No band or line-by-line Yes Yes plane-parallel or spherical free for non-commercial purposes Monte-Carlo code parallelized by GPU (CUDA). Atmosphere or/and ocean options
Streamer, Fluxnet [39][46] Key and Schweiger (1998)

[47]

No No λ>0.6 mm λ<15 mm No No band Yes ? plane-parallel Fluxnet is fast version of STREAMER using neural nets
XRTM [40] Yes Yes Yes Yes Yes Yes Yes Yes plane-parallel and pseudo-spherical GPL
VLIDORT/LIDORT [41][48] Spurr and Christi (2019)

[49]

Yes Yes Yes Yes ? ? line-by-line Yes Yes VLIDORT only plane-parallel Used in SMART and VSTAR radiative transfer
Name Website References UV VIS Near IR Thermal IR Microwave mm/sub-mm line-by-line/band Scattering Polarised Geometry License Notes

Molecular absorption databases

edit

For a line-by-line calculation, one needs characteristics of the spectral lines, such as the line centre, the intensity, the lower-state energy, the line width and the shape.

Name Author Description
HITRAN[50] Rothman et al. (1987, 1992, 1998, 2003, 2005, 2009, 2013, 2017) HITRAN is a compilation of molecular spectroscopic parameters that a variety of computer codes use to predict and simulate the transmission and emission of light in the atmosphere. The original version was created at the Air Force Cambridge Research Laboratories (1960's). The database is maintained and developed at the Harvard-Smithsonian Center for Astrophysics in Cambridge MA, USA.
GEISA[51] Jacquinet-Husson et al. (1999, 2005, 2008) GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) is a computer-accessible spectroscopic database, designed to facilitate accurate forward radiative transfer calculations using a line-by-line and layer-by-layer approach. It was started in 1974 at Laboratoire de Météorologie Dynamique (LMD/IPSL) in France. GEISA is maintained by the ARA group at LMD (Ecole Polytechnique) for its scientific part and by the ETHER group (CNRS Centre National de la Recherche Scientifique-France) at IPSL (Institut Pierre Simon Laplace) for its technical part. Currently, GEISA is involved in activities related to the assessment of the capabilities of IASI (Infrared Atmospheric Sounding Interferometer on board of the METOP European satellite) through the GEISA/IASI database derived from GEISA.

See also

edit

References

edit
Footnotes
  1. ^ Andrews, Rob W.; Pearce, Joshua M. (2013). "The effect of spectral albedo on amorphous silicon and crystalline silicon solar photovoltaic device performance". Solar Energy. 91: 233–241. Bibcode:2013SoEn...91..233A. doi:10.1016/j.solener.2013.01.030.
  2. ^ Continual Intercomparison of Radiation Codes
  3. ^ Scott, N. A.; Chedin, A. (1981). "A fast line-by- line method for atmospheric absorption computations: The Automatized Atmospheric Absorption Atlas". J. Appl. Meteorol. 20 (7): 802–812. Bibcode:1981JApMe..20..802S. doi:10.1175/1520-0450(1981)020<0802:AFLBLM>2.0.CO;2.
  4. ^ Kotchenova, S. Y.; Vermote, E. F.; Matarrese, R; Klemm, F. J. (2006). "Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path Radiance". Applied Optics. 45 (26): 6762–6774. Bibcode:2006ApOpt..45.6762K. CiteSeerX 10.1.1.488.9804. doi:10.1364/AO.45.006762. PMID 16926910.
  5. ^ Eriksson, P.; Buehler, S. A.; Davis, C.P.; Emde, C.; Lemke, O. (2011). "ARTS, the atmospheric radiative transfer simulator, Version 2" (PDF). Journal of Quantitative Spectroscopy and Radiative Transfer. 112 (10): 1551–1558. Bibcode:2011JQSRT.112.1551E. doi:10.1016/j.jqsrt.2011.03.001. Retrieved 2016-11-02.
  6. ^ Buehler, S. A.; Mendrok, J.; Eriksson, P.; Perrin, A.; Larsson, R.; Lemke, O. (2018). "ARTS, the atmospheric radiative transfer simulator — version 2.2, the planetary toolbox edition" (PDF). Geoscientific Model Development (GMD). 11 (4): 1537–1556. Bibcode:2018GMD....11.1537B. doi:10.5194/gmd-11-1537-2018. Retrieved 2023-01-16.
  7. ^ Chapman, I. M.; Naylor, D. A.; Gom, B. G.; Querel, R. R.; Davis-Imhof, P. (2009). "BTRAM: An Interactive Atmospheric Radiative Transfer Model". The 30th Canadian Symposium on Remote Sensing. 30: 22–25.
  8. ^ Jin, Z.; Charlock, T.P.; Rutledge, K.; Stamnes, K.; Wang, Y. (2006). "An analytical solution of radiative transfer in the coupled atmosphere-ocean system with rough surface". Appl. Opt. 45 (28): 7443–7455. Bibcode:2006ApOpt..45.7443J. doi:10.1364/AO.45.007443. hdl:2060/20080015519. PMID 16983433. S2CID 39305812.
  9. ^ Hillier, D. John (2020-05-01). "CMFGEN: A Key Spectroscopic Tool for Astrophysicists". HST Proposal: 16131.
  10. ^ Johnson, B; Dang, C; Stegmann, P; Liu, Q; Moradi, I; Auligne, T (2023). "The Community Radiative Transfer Model (CRTM): Community-Focused Collaborative Model Development Accelerating Research to Operations". Bull. Amer. Meteor. Soc. 104 (10): 3–7. Bibcode:2023BAMS..104E1817J. doi:10.1175/BAMS-D-22-0015.1. S2CID 258738740.
  11. ^ Gastellu-Etchegorry, JP; Demarez, V; Pinel, V; Zagolski, F (1996). "Modelling radiative transfer in heterogeneous 3-D vegetation canopies". Rem. Sens. Env. 58 (2): 131–156. Bibcode:1996RSEnv..58..131G. doi:10.1016/0034-4257(95)00253-7.
  12. ^ Stamnes, Knut; Tsay, S. C.; Wiscombe, W.; Jayaweera, Kolf (1988). "Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media". Appl. Opt. 27 (12): 2502–2509. Bibcode:1988ApOpt..27.2502S. doi:10.1364/AO.27.002502. PMID 20531783.
  13. ^ Lin, Zhenyi; Stamnes, S.; Jin, Z.; Laszlo, I.; Tsay, S. C.; Wiscombe, W. (2015). "Improved discrete ordinate solutions in the presence of an anisotropically reflecting lower boundary: Upgrades of the DISORT computational tool". Journal of Quantitative Spectroscopy and Radiative Transfer. 157 (12): 119–134. Bibcode:2015JQSRT.157..119L. doi:10.1016/j.jqsrt.2015.02.014. S2CID 119467744.
  14. ^ Xie, Y.; Sengupta, M.; Dudhia, J. (2016). "A Fast All-sky Radiation Model for Solar applications (FARMS): Algorithm and performance evaluation". Solar Energy. 135: 435–445. Bibcode:2016SoEn..135..435X. doi:10.1016/j.solener.2016.06.003.
  15. ^ Fu, Q.; Liou, K.-N (1993). "Parameterization of the radiative properties of cirrus clouds". J. Atmos. Sci. 50 (13): 2008–2025. Bibcode:1993JAtS...50.2008F. doi:10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.
  16. ^ "Fu-Liou Cloud/Aerosol Forcing Page (Version 200503/MARCH 2005)". Langley Research Center. NASA. Archived from the original on 2010-05-27. Retrieved 2010-07-07.
  17. ^ Martin-Torres, F. J.; Kutepov, A.; Dudhia, A.; Gusev, O.; Feofilov, A.G. (2003). "Accurate and fast computation of the radiative transfer absorption rates for the infrared bands in the atmosphere of Titan". Geophysical Research Abstracts: 7735. Bibcode:2003EAEJA.....7735M.
  18. ^ Edwards, D. P. (1992), GENLN2: A general line-by-line atmospheric transmittance and radiance model, Version 3.0 description and users guide, NCAR/TN-367-STR, National Center for Atmospheric Research, Boulder, Co.
  19. ^ KARINE: a tool for infrared radiative transfer analysis in planetary atmospheres par V. Eymet. Note technique interne, Laboratoire d'Energétique, 2005.
  20. ^ Clough, S. A.; Shephard, M. W.; Mlawer, E. J.; Delamere, J. S.; Iacono, M. J.; Cady-Pereira, K.; Boukabara, S.; Brown, P. D. (2005). "Atmospheric radiative transfer modeling: a summary of the AER codes". J. Quant. Spectrosc. Radiat. Transfer. 91 (2): 233–244. Bibcode:2005JQSRT..91..233C. doi:10.1016/j.jqsrt.2004.05.058. hdl:2027.42/142162.
  21. ^ Fiorino, S. T.; Randall, R. M.; Via, M. F.; Burley, J. L. (2014). "Validation of a UV-to-RF High-Spectral-Resolution Atmospheric Boundary Layer Characterization Tool". J. Appl. Meteorol. Climatol. 53 (1): 136–156. Bibcode:2014JApMC..53..136F. doi:10.1175/JAMC-D-13-036.1.
  22. ^ Gordley, L. L.; Marshall, B. T. (1994). "LINEPAK: Algorithm for Modeling Spectral Transmittance and Radiance". J. Quant. Spectrosc. Radiat. Transfer. 52 (5): 563–580. Bibcode:1994JQSRT..52..563G. CiteSeerX 10.1.1.371.5401. doi:10.1016/0022-4073(94)90025-6.
  23. ^ Mayer, B.; Kylling, A. (2005). "Technical note: The libRadtran software package for radiative transfer calculations – description and examples of use" (PDF). Atmospheric Chemistry and Physics. 5 (7): 1855–1877. Bibcode:2005ACP.....5.1855M. doi:10.5194/acp-5-1855-2005.
  24. ^ Caillaut, K.; Fauqueux, S.; Bourlier, C.; Simoneau, P.; Labarre, L. (2007). "Multiresolution optical characteristics of rough sea surface in the infrared". Applied Optics. 46 (22): 5471–5481. Bibcode:2007ApOpt..46.5471C. doi:10.1364/AO.46.005471. PMID 17676164.
  25. ^ "MCARaTS". sites.google.com. Retrieved 2016-04-01.
  26. ^ Berk, A.; Bernstein, L. S.; Anderson, G. P.; Acharya, P. K.; Robertson, D. C.; Chetwynd, J. H.; Adler-Golden, S. M. (1998). "MODTRAN cloud and multiple scattering upgrades with application to AVIRIS". Remote Sensing of Environment. 65 (3): 367–375. Bibcode:1998RSEnv..65..367B. doi:10.1016/S0034-4257(98)00045-5.
  27. ^ Cornette, William M. (2006). "Moderate Spectral Atmospheric Radiance and Transmittance (MOSART) Computer Code Version 2.00., Lexington, MA (2006)". Proc. IEEE-GRSS/AFRL Atmospheric Transmission Modeling Conference, Lexington MA.
  28. ^ Wang, Zhen; Cui, Shengcheng; Yang, Jun; Gao, Haiyang; Liu, Chao; Zhang, Zhibo (2017). "A novel hybrid scattering order-dependent variance reduction method for monte carlo simulations of radiative transfer in cloudy atmosphere". Journal of Quantitative Spectroscopy and Radiative Transfer. 189: 283–302. Bibcode:2017JQSRT.189..283W. doi:10.1016/j.jqsrt.2016.12.002.
  29. ^ Wang, Zhen; Cui, Shengcheng; Zhang, Zhibo; Yang, Jun; Gao, Haiyang; Zhang, Feng (2019). "Theoretical extension of universal forward and backward Monte Carlo radiative transfer modeling for passive and active polarization observation simulations". Journal of Quantitative Spectroscopy and Radiative Transfer. 235: 81–94. Bibcode:2019JQSRT.235...81W. doi:10.1016/j.jqsrt.2019.06.025.
  30. ^ Batalha, Natasha E.; Marley, Mark S.; Lewis, Nikole K.; Fortney, Jonathan J. (2019-06-01). "Exoplanet Reflected-light Spectroscopy with PICASO". The Astrophysical Journal. 878 (1): 70. arXiv:1904.09355. Bibcode:2019ApJ...878...70B. doi:10.3847/1538-4357/ab1b51. ISSN 0004-637X. S2CID 128347336.
  31. ^ Mukherjee, Sagnick; Batalha, Natasha E.; Fortney, Jonathan J.; Marley, Mark S. (2023). "PICASO 3.0: A One-Dimensional Climate Model for Giant Planets and Brown Dwarfs". The Astrophysical Journal. 942 (2): 71. arXiv:2208.07836. Bibcode:2023ApJ...942...71M. doi:10.3847/1538-4357/ac9f48. S2CID 251594505.
  32. ^ Pannier, E.; Laux, C. (2019). "RADIS: A nonequilibrium line-by-line radiative code for CO2 and HITRAN-like database species" (PDF). Quantitative Spectroscopy and Radiative Transfer. 222–223: 12–25. Bibcode:2019JQSRT.222...12P. doi:10.1016/j.jqsrt.2018.09.027. S2CID 125474810.
  33. ^ Mlawer, E. J.; Taubman, S. J.; Brown, P. D.; Iacono, M. J.; Claugh, S. A. (1997). "RRTM, a validated correlated-k model for the longwave". J. Geophys. Res. 102 (16): 663–682. Bibcode:1997JGR...10216663M. doi:10.1029/97JD00237. S2CID 54031652.
  34. ^ Saunders, R. W.; Matricardi, M.; Brunel, P. (1999). "An Improved Fast Radiative Transfer Model for Assimilation of Satellite Radiance Observations". Quarterly Journal of the Royal Meteorological Society. 125 (556): 1407–1425. Bibcode:1999QJRMS.125.1407S. doi:10.1256/smsqj.55614.
  35. ^ "Welcome to SASKTRAN's documentation! — SASKTRAN 0.1.3 documentation". arg.usask.ca. Retrieved 2018-04-11.
  36. ^ Bourassa, A.E.; Degenstein, D.A.; Llewellyn, E.J. (2008). "SASKTRAN: A spherical geometry radiative transfer code for efficient estimation of limb scattered sunlight". Journal of Quantitative Spectroscopy and Radiative Transfer. 109 (1): 52–73. Bibcode:2008JQSRT.109...52B. doi:10.1016/j.jqsrt.2007.07.007.
  37. ^ Zawada, D. J.; Dueck, S. R.; Rieger, L. A.; Bourassa, A. E.; Lloyd, N. D.; Degenstein, D. A. (2015-06-26). "High-resolution and Monte Carlo additions to the SASKTRAN radiative transfer model". Atmos. Meas. Tech. 8 (6): 2609–2623. Bibcode:2015AMT.....8.2609Z. doi:10.5194/amt-8-2609-2015. ISSN 1867-8548.
  38. ^ Ricchiazzi, P.; Yang, S.; Gautier, C.; Sowle, D. (1998). "SBDART: A Research and Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earth's Atmosphere". Bull. Am. Meteorol. Soc. 79 (10): 2101–2114. Bibcode:1998BAMS...79.2101R. doi:10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2. S2CID 55800532.
  39. ^ Rozanov, A.; Rozanov, V.; Buchwitz, M.; Kokhanovsky, A.; Burrows, J. P. (2005). "SCIATRAN 2.0-A new radiative transfer model for geophysical applications in the 175-2400 nm spectral region". Advances in Space Research. 36 (5): 1015–1019. Bibcode:2005AdSpR..36.1015R. doi:10.1016/j.asr.2005.03.012.
  40. ^ Rozanov, V.; Rozanov, A.; Kokhanovsky, A.; Burrows, J. P. (2014). "Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN". Journal of Quantitative Spectroscopy and Radiative Transfer. 133: 13–71. Bibcode:2014JQSRT.133...13R. doi:10.1016/j.jqsrt.2013.07.004.
  41. ^ Lyapustin, A. (2002). "Radiative transfer code SHARM-3D for radiance simulations over a non-Lambertian nonhomogeneous surface: intercomparison study". Applied Optics. 41 (27): 5607–5615. Bibcode:2002ApOpt..41.5607L. doi:10.1364/AO.41.005607. PMID 12269559.
  42. ^ Evans, K. F. (1998). "The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer". Journal of the Atmospheric Sciences. 55 (3): 429–446. Bibcode:1998JAtS...55..429E. CiteSeerX 10.1.1.555.9038. doi:10.1175/1520-0469(1998)055<0429:TSHDOM>2.0.CO;2. S2CID 40027059.
  43. ^ Amato, U.; Masiello, G.; Serio, C.; Viggiano, M. (2002). "The σ-IASI code for the calculation of infrared atmospheric radiance and its derivatives". Environmental Modelling & Software. 17 (7): 651–667. doi:10.1016/S1364-8152(02)00027-0.
  44. ^ Liuzzi, G.; Masiello, G.; Serio, C.; Meloni, D.; Di Biagio, C.; Formenti, P. (2017). "Consistency of dimensional distributions and refractive indices of desert dust measured over Lampedusa with IASI radiances". Atmospheric Measurement Techniques. 10 (2): 599–615. Bibcode:2017AMT....10..599L. doi:10.5194/amt-10-599-2017. hdl:11563/125342.
  45. ^ Ramon, D. (2019). "Modeling polarized radiative transfer in the ocean-atmosphere system with the GPU-accelerated SMART-G Monte Carlo code". Journal of Quantitative Spectroscopy and Radiative Transfer. 222–223: 89–107. Bibcode:2019JQSRT.222...89R. doi:10.1016/j.jqsrt.2018.10.017. S2CID 125121586.
  46. ^ FluxNet
  47. ^ Key, J.; Schweiger, A. J. (1998). "Tools for atmospheric radiative transfer: Streamer and FluxNet". Computers & Geosciences. 24 (5): 443–451. Bibcode:1998CG.....24..443K. doi:10.1016/S0098-3004(97)00130-1. hdl:2060/19980018471. S2CID 118079586.
  48. ^ [1] |-->]
  49. ^ Spurr, R.; Christi, M. (2019). The LIDORT and VLIDORT Linearized Scalar and Vector Discrete Ordinate Radiative Transfer Models. Springer Series in Light Scattering. pp. 1–62. doi:10.1007/978-3-030-03445-0_1. S2CID 126425750.
  50. ^ HITRAN Site
  51. ^ GEISA Site
General
  • Bohren, Craig F. and Eugene E. Clothiaux, Fundamentals of atmospheric radiation: an introduction with 400 problems, Weinheim: Wiley-VCH, 2006, 472 p., ISBN 3-527-40503-8.
  • Goody, R. M. and Y. L. Yung, Atmospheric Radiation: Theoretical Basis. Oxford University Press, 1996 (Second Edition), 534 pages, ISBN 978-0-19-510291-8.
  • Liou, Kuo-Nan, An introduction to atmospheric radiation, Amsterdam; Boston: Academic Press, 2002, 583 p., International geophysics series, v.84, ISBN 0-12-451451-0.
  • Mobley, Curtis D., Light and water: radiative transfer in natural waters; based in part on collaborations with Rudolph W. Preisendorfer, San Diego, Academic Press, 1994, 592 p., ISBN 0-12-502750-8
  • Petty, Grant W, A first course in atmospheric radiation (2nd Ed.), Madison, Wisconsin: Sundog Pub., 2006, 472 p., ISBN 0-9729033-1-3
  • Preisendorfer, Rudolph W., Hydrologic optics, Honolulu, Hawaii: U.S. Dept. of Commerce, National Oceanic & Atmospheric Administration, Environmental Research Laboratories, Pacific Marine Environmental Laboratory, 1976, 6 volumes.
  • Stephens, Graeme L., Remote sensing of the lower atmosphere: an introduction, New York, Oxford University Press, 1994, 523 p. ISBN 0-19-508188-9.
  • Thomas, Gary E. and Knut Stamnes, Radiative transfer in the atmosphere and ocean, Cambridge, New York, Cambridge University Press, 1999, 517 p., ISBN 0-521-40124-0.
  • Zdunkowski, W., T. Trautmann, A. Bott, Radiation in the Atmosphere. Cambridge University Press, 2007, 496 pages, ISBN 978-0-521-87107-5
edit