From Wikipedia, the free encyclopedia
Protein-coding gene in the species Homo sapiens
Potassium channel, subfamily K, member 13 (KCNK13 ), also known as K2P 13.1 or THIK-1, is a protein that in humans is encoded by the KCNK13 gene . It is a potassium channel containing two pore-forming P domains.[ 5] [ 6]
Ribbon structure of homodimeric two-pore potassium channel K2P13 (THIK-1).[ 7]
K2P 13.1 was first discovered in 2000 from a rat cDNA library , along with the closely related protein K2P 12.1 [ 8] The two channels were named tandem pore domain halothane-inhibited K+ channel 1 and 2 (THIK-1 and THIK-2) because the anesthetic halothane inhibited the potassium current. THIK-1 was also shown to be activated by arachidonic acid and displayed mild voltage dependence, with moderate outward rectification at low external K+ and weak inward rectification with nearly symmetrical K+ concentrations.[ 8] [ 9] Later research showed that THIK-1 can be activated by G-protein-coupled receptor pathways[ 10] and by polyanionic lipids such as PIP2 and oleoyl-CoA .[ 11]
In humans, THIK-1 expression is almost exclusively restricted to microglia , where it functions as the main potassium channel and is responsible for maintainting their resting membrane potential through tonic background potassium conductance[ 12] . THIK-1 activity can regulate microglial ramification, surveillance, NLRP3 inflammasome activation, and subsequent release of pro-inflammatory cytokine interleukin-1β (IL-1β) [ 13] [ 14] [ 15] . It also plays a role in cell shrinkage during apoptosis via caspase-8 cleavage.[ 16]
^ a b c GRCh38: Ensembl release 89: ENSG00000152315 – Ensembl , May 2017
^ a b c GRCm38: Ensembl release 89: ENSMUSG00000045404 – Ensembl , May 2017
^ "Human PubMed Reference:" . National Center for Biotechnology Information, U.S. National Library of Medicine .
^ "Mouse PubMed Reference:" . National Center for Biotechnology Information, U.S. National Library of Medicine .
^ Rajan S, Wischmeyer E, Karschin C, Preisig-Müller R, Grzeschik KH, Daut J, Karschin A, Derst C (March 2001). "THIK-1 and THIK-2, a novel subfamily of tandem pore domain K+ channels" . J. Biol. Chem . 276 (10): 7302–11. doi :10.1074/jbc.M008985200 . PMID 11060316 .
^ Goldstein SA, Bayliss DA, Kim D, Lesage F, Plant LD, Rajan S (December 2005). "International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels" . Pharmacol. Rev . 57 (4): 527–40. doi :10.1124/pr.57.4.12 . PMID 16382106 . S2CID 7356601 .
^ Rödström KE, Eymsh B, Proks P, Hayre MS, Madry C, Rowland A, Newstead S, Baukrowitz T, Schewe M (2024-06-27), CryoEM Structure of the human THIK-1 K2P K+ Channel Reveals a Lower 'Y-gate' Regulated by Lipids and Anaesthetics , doi :10.1101/2024.06.26.600475 , retrieved 2024-12-04
^ a b Rajan S, Wischmeyer E, Karschin C, Preisig-Müller R, Grzeschik KH, Daut J, Karschin A, Derst C (March 2001). "THIK-1 and THIK-2, a novel subfamily of tandem pore domain K+ channels" . J. Biol. Chem . 276 (10): 7302–11. doi :10.1074/jbc.M008985200 . PMID 11060316 .
^ Aggarwal P, Singh S, Ravichandiran V (2021-08-01). "Two-Pore Domain Potassium Channel in Neurological Disorders" . The Journal of Membrane Biology . 254 (4): 367–380. doi :10.1007/s00232-021-00189-8 . ISSN 1432-1424 . PMID 34169340 .
^ Tateyama M, Kubo Y (2023-04-26). "Regulation of the two-pore domain potassium channel, THIK-1 and THIK-2, by G protein coupled receptors" . PLOS ONE . 18 (4): e0284962. Bibcode :2023PLoSO..1884962T . doi :10.1371/journal.pone.0284962 . ISSN 1932-6203 . PMC 10132538 . PMID 37099539 .
^ Riel EB, Jürs BC, Cordeiro S, Musinszki M, Schewe M, Baukrowitz T (2022-02-07). "The versatile regulation of K2P channels by polyanionic lipids of the phosphoinositide and fatty acid metabolism" . Journal of General Physiology . 154 (2). doi :10.1085/jgp.202112989 . ISSN 0022-1295 . PMC 8693234 . PMID 34928298 .
^ Rifat A, Ossola B, Bürli RW, Dawson LA, Brice NL, Rowland A, Lizio M, Xu X, Page K, Fidzinski P, Onken J, Holtkamp M, Heppner FL, Geiger JR, Madry C (2024-02-26). "Differential contribution of THIK-1 K+ channels and P2X7 receptors to ATP-mediated neuroinflammation by human microglia" . Journal of Neuroinflammation . 21 (1): 58. doi :10.1186/s12974-024-03042-6 . ISSN 1742-2094 . PMC 10895799 . PMID 38409076 .
^ Madry C, Kyrargyri V, Arancibia-Cárcamo IL, Jolivet R, Kohsaka S, Bryan RM, Attwell D (January 2018). "Microglial Ramification, Surveillance, and Interleukin-1β Release Are Regulated by the Two-Pore Domain K+ Channel THIK-1" . Neuron . 97 (2): 299–312.e6. doi :10.1016/j.neuron.2017.12.002 . PMC 5783715 . PMID 29290552 .
^ Xu Z, Chen Zm, Wu X, Zhang L, Cao Y, Zhou P (2020-12-07). "Distinct Molecular Mechanisms Underlying Potassium Efflux for NLRP3 Inflammasome Activation" . Frontiers in Immunology . 11 . doi :10.3389/fimmu.2020.609441 . ISSN 1664-3224 . PMC 7793832 . PMID 33424864 .
^ Drinkall S, Lawrence CB, Ossola B, Russell S, Bender C, Brice NB, Dawson LA, Harte M, Brough D (2022). "The two pore potassium channel THIK-1 regulates NLRP3 inflammasome activation" . Glia . 70 (7): 1301–1316. doi :10.1002/glia.24174 . ISSN 1098-1136 . PMC 9314991 . PMID 35353387 .
^ Sakamaki K, Ishii TM, Sakata T, Takemoto K, Takagi C, Takeuchi A, Morishita R, Takahashi H, Nozawa A, Shinoda H, Chiba K, Sugimoto H, Saito A, Tamate S, Satou Y (2016-11-01). "Dysregulation of a potassium channel, THIK-1, targeted by caspase-8 accelerates cell shrinkage" . Biochimica et Biophysica Acta (BBA) - Molecular Cell Research . 1863 (11): 2766–2783. doi :10.1016/j.bbamcr.2016.08.010 . ISSN 0167-4889 . PMID 27566292 .
Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shenmen CM, Schuler GD (2002). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences" . Proc. Natl. Acad. Sci. U.S.A . 99 (26): 16899–903. Bibcode :2002PNAS...9916899M . doi :10.1073/pnas.242603899 . PMC 139241 . PMID 12477932 .
Fearon IM, Campanucci VA, Brown ST, Hudasek K, o'Kelly IM, Nurse CA (2006). "Acute Hypoxic Regulation of Recombinant THIK-1 Stably Expressed in HEK293 Cells" . The Arterial Chemoreceptors . ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY. Vol. 580. pp. 203–8, discussion 351–9 . doi :10.1007/0-387-31311-7_31 . ISBN 978-0-387-31310-8 . PMID 16683720 .
Goldstein SA, Bockenhauer D, O'Kelly I, Zilberberg N (2001). "Potassium leak channels and the KCNK family of two-P-domain subunits" . Nat. Rev. Neurosci . 2 (3): 175–84. doi :10.1038/35058574 . PMID 11256078 . S2CID 9682396 .
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R (2004). "The Status, Quality, and Expansion of the NIH Full-Length cDNA Project: The Mammalian Gene Collection (MGC)" . Genome Res . 14 (10B): 2121–7. doi :10.1101/gr.2596504 . PMC 528928 . PMID 15489334 .
Theilig F, Goranova I, Hirsch JR, Wieske M, ÜNsal S, Bachmann S, Veh RW, Derst C (2008). "Cellular localization of THIK-1 (K(2P)13.1) and THIK-2 (K(2P)12.1) K channels in the mammalian kidney" . Cell. Physiol. Biochem . 21 (1–3): 63–74. doi :10.1159/000113748 . PMID 18209473 .
Gierten J, Ficker E, Bloehs R, Schlömer K, Kathöfer S, Scholz E, Zitron E, Kiesecker C, Bauer A (2008). "Regulation of two-pore-domain (K2P) potassium leak channels by the tyrosine kinase inhibitor genistein" . Br. J. Pharmacol . 154 (8): 1680–90. doi :10.1038/bjp.2008.213 . PMC 2518462 . PMID 18516069 .