基于Spark的电影推荐系统,包含爬虫项目、web网站、后台管理系统以及spark推荐系统
-
Updated
Apr 1, 2019 - Java
基于Spark的电影推荐系统,包含爬虫项目、web网站、后台管理系统以及spark推荐系统
This is the github repo for Learning Spark: Lightning-Fast Data Analytics [2nd Edition]
CTR prediction model based on spark(LR, GBDT, DNN)
Qubole Sparklens tool for performance tuning Apache Spark
Spark library for generalized K-Means clustering. Supports general Bregman divergences. Suitable for clustering probabilistic data, time series data, high dimensional data, and very large data.
Apache Spark™ and Scala Workshops
商品类目预测,使用 Spring Boot 开发框架和 Spark MLlib 机器学习框架,通过 TF-IDF 和 Bayes 算法,训练出一个商品类目预测模型。该模型可以根据商品名称自动预测出商品类目。项目对外提供 RESTFul 接口。
🌟 ✨ Analyze and visualize Twitter Sentiment on a world map using Spark MLlib
[NOT MAINTAINED] Predicting Bit coin price using Time series analysis and sentiment analysis of tweets on bitcoin
基于spark-ml,spark-mllib,spark-streaming的推荐算法实现
UC Berkeley team's submission for RecSys Challenge 2018
Random Forests in Apache Spark
A Deep Neural-Network based (Deep MLP) Stock Trading System based on Evolutionary (Genetic Algorithm) Optimized Technical Analysis Parameters (using Apache Spark MLlib)
机器学习教程,本教程包含基于numpy、sklearn与tensorflow机器学习,也会包含利���spark、flink加快模型训练等用法。本着能够较全的引导读者入门机器学习。
Natural Korean Processor for Apache Spark
Science des Données Saison 5: Technologies pour l'apprentissage automatique / statistique de données massives et l'Intelligence Artificielle
A new stock trading and prediction model based on a MLP neural network utilizing technical analysis indicator values as features (using Apache Spark MLlib)
商品关联关系挖掘,使用Spring Boot开发框架和Spark MLlib机器学习框架,通过FP-Growth算法,分析用户的购物车商品数据,挖掘商品之间的关联关系。项目对外提供RESTFul接口。
使用Spark的MLlib、Hbase作为模型、Hive作数据清洗的核心推荐引擎,在Spark on Yarn测试通过
✨ Spark ML implementation of SOM algorithm (Kohonen self-organizing map)
Add a description, image, and links to the spark-mllib topic page so that developers can more easily learn about it.
To associate your repository with the spark-mllib topic, visit your repo's landing page and select "manage topics."