Skip to content

troyfeng116/text-scorer

Repository files navigation

text-scorer (v2.1.2)

A configurable text quality scorer/gibberish detector.

Installation

npm install text-scorer

Description and Use Cases

This text scoring model implements a matrix that tracks the probabilities of character bigram and trigram transitions, that is, a Markov chain where the event chains consist of character bigrams and trigrams and the transition probabilities correspond to approximate relative frequencies of each chain within the English language. The model consists of three major parts:

  1. English language training. A large corpus (the default training corpus is Harry Potter and the Sorcerer's Stone) is passed to the model to learn the relative frequencies of all character N-grams. For example, the model will learn through training that the t-h bigram is much more likely to occur than the q-g bigram.
  2. Cutoff training. A sample of good and bad inputs is passed to the model so that it can calculate predictions for what the cutoff point between gibberish and non-gibberish will be.
  3. Input/output. Inputs passed to the trained model will be evaluated and assigned a score (the average of all character N-gram probabilities in the input). That score is compared against the model's cutoff predictions to come up with the final predictions.

Sample use cases:

  • Filter gibberish spam from list of tweets, emails, survey responses, etc.
  • Check if the input to a text field or a form is gibberish
  • Remove nonsensical tokens from tokenized text input
  • Generate numerical distributions for similarity/compatibility of words/N-grams relative to English language

Usage and Examples

Import module

import { TextScorer } from 'text-scorer'
import { CutoffScoreStrictness, NGramMatrix } from 'text-scorer' // Additional type imports

Constructor

const textScorer = new TextScorer(useBigram?: boolean, options?: {
    initialTrainingText?: string
    goodSamples?: string[]
    badSamples?: string[]
    ignoreCase?: boolean
    additionalCharsToInclude?: string
})

// Sample initialization:
// const textScorer = new TextScorer(true, {
//     initialTrainingText: MY_TRAINING_TEXT,
//     ignoreCase: false,
//     additionalCharsToInclude: '.,!?',
// })

Instantiates new TextScorer object. Constructor takes optional arguments useBigram (defaults to true, which prefers bigrams over trigrams) and options:

options field type purpose/description default value
initialTrainingText string An English corpus/text in string format to initialize N-gram probability matrix stringified Harry Potter & the Sorcerer's Stone
goodSamples string[] An array of manually selected correctly-spelled English sentences to calculate predicted cutoff scores in conjunction with badSamples hard-coded array of English sentence strings
badSamples string[] An array of gibberish strings to calculate predicted cutoff scores in conjunction with goodSamples hard-coded array of gibberish strings
ignoreCase boolean If true, converts all training input text and scoring output text to lower case. Else, considers all alphabetic chars true
additionalCharsToInclude string All unique chars in additionalCharsToInclude are appended to the base set of chars ([a-z] and space, or unicodes 97-122 and 32) to include in N-grams. empty string '' (only alphabetic chars)

isGibberish

textScorer.isGibberish('The quick fox jumps over the lazy dog') // false
textScorer.isGibberish('Tom Brady') // false
textScorer.isGibberish('oqbwifsiehf osdfbw sjkdoo thehwei') // true
textScorer.isGibberish('This sentence is half gibberish lwpqgtyukcvi', CutoffScoreStrictness.Loose) // false
textScorer.isGibberish('This sentence is half gibberish lwpqgtyukcvi', CutoffScoreStrictness.Strict) // true

Returns whether input text string is gibberish, according to trained cutoff predictions and desired strictness. strictness argument must be of a member of the CutoffScoreStrictness enum (Strict | Avg | Loose), where CutoffScoreStrictness.Strict will classify more input strings as gibberish and CutoffScoreStrictness.Loose will classify fewer input strings as gibberish. The strictness argument defaults to Avg.

trainWithEnglishText

textScorer.trainWithEnglishText(my_own_training_text) // Additional training for textScorer if desired

Trains the TextScorer object with any training string passed to it. This will re-adjust the N-gram probabilities on top of the initial training and any prior training. Training also automatically recalibrates cutoff score predictions. Recommended to train only on long training corpus in accurate English.

recalibrateCutoffScores

textScorer.recalibrateCutoffScores(good_sample_texts, bad_sample_texts) // Recalculate predicted score cutoffs based on provided samples

Manually re-calibrate the estimated cutoff scores. Takes parameters of two hand-picked string[] of good and bad sample texts.

getTextScore

textScorer.getTextScore('The quick fox jumps over the lazy dog') // 0.07108346875540186
textScorer.getTextScore('asdk akljhsug wertgbk') // 0.009196665505633908

Returns actual calculated number score of input text (average probability of all N-grams in input text: range between 0 and 1 with avg 1/(26*26) = 1/676 for bigrams and 1/(26*26*26) = 1/17576 for trigrams). Useful for viewing scores of input texts to choose your own hard-coded cutoff score points.

getCutoffScores

textScorer.getCutoffScores()
// {
//    loose: 0.017614231370230753,
//    avg: 0.025681000339544513,
//    strict: 0.033747769308858276
//  },

Returns predicted cutoff scores at all three strictness levels (loose, avg, and strict).

getTextScoreAndCutoffs

textScorer.getTextScoreAndCutoffs('This sentence is half gibberish lwpqgtyukcvi')
// {
//   cutoffs: {
//     loose: 0.017614231370230753,
//     avg: 0.025681000339544513,
//     strict: 0.033747769308858276
//   },
//   score: 0.029883897109006206
// }

Returns current predicted cutoff scores of NGramMatrix bundled together with the calculated numerical score of input text for further inspection.

getDetailedWordInfo

textScorer.getDetailedWordInfo('This sentence is half gibberish lwpqgtyukcvi')
// {
//   numWords: 6,
//   numGibberishWords: 1,
//   words: [
//     { word: 'this', score: 0.16446771693748807 },
//     { word: 'sentence', score: 0.06663203799074222 },
//     { word: 'is', score: 0.10310603723130722 },
//     { word: 'half', score: 0.06106261137943801 },
//     { word: 'gibberish', score: 0.05521086505974423 },
//     { word: 'lwpqtyukci', score: 0.0008040476955630964 }
//   ],
//   gibberishWords: [ { word: 'lwpqtyukci', score: 0.0008040476955630964 } ],
//   cutoffs: {
//     loose: 0.017614231370230753,
//     avg: 0.025681000339544513,
//     strict: 0.033747769308858276
//   }
// }

Returns detailed word-by-word analysis of text input for more customizable gibberish detection metrics as desired (i.e. number or percentage of words that are gibberish)

Type and enum definitions

interface TextScorerInterface {
    NGramMatrix: NGramMatrix
    trainWithEnglishText: (text: string) => void
    recalibrateCutoffScores: (goodSamples: string[], badSamples: string[]) => void
    isGibberish: (text: string, strictness?: CutoffScoreStrictness) => boolean
    getTextScore: (text: string) => number
    getCutoffScores: () => CutoffScore
    getTextScoreAndCutoffs: (text: string) => { cutoffs: CutoffScore; score: number }
    getDetailedWordInfo: (
        text: string,
        strictness?: CutoffScoreStrictness,
    ) => {
        numWords: number
        numGibberishWords: number
        words: { word: string; score: number }[]
        gibberishWords: { word: string; score: number }[]
        cutoffs: CutoffScore
    }
}

class TextScorer implements TextScorerInterface {}

interface NGramMatrix {
    train: (text: string) => void
    getScore: (text: string) => number
    getCutoffScores: () => CutoffScore
    recalibrateCutoffScores: (goodSamples?: string[], badSamples?: string[]) => void
    isGibberish: (text: string, strictness?: CutoffScoreStrictness) => boolean
    getWordByWordAnalysis: (
        text: string,
        strictness?: CutoffScoreStrictness,
    ) => {
        numWords: number
        numGibberishWords: number
        words: { word: string; score: number }[]
        gibberishWords: { word: string; score: number }[]
        cutoffs: CutoffScore
    }
}

interface NGramMatrixOptions {
    initialTrainingText?: string
    goodSamples?: string[]
    badSamples?: string[]
    ignoreCase?: boolean
    additionalCharsToInclude?: string
}

enum CutoffScoreStrictness {
    Strict = 'Strict',
    Avg = 'Avg',
    Loose = 'Loose',
}

License

MIT