Skip to content

PyTorch implementation for the APoT quantization (ICLR 2020)

Notifications You must be signed in to change notification settings

yhhhli/APoT_Quantization

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

48 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

weight_visual

APoT Quantization

@inproceedings{
Li2020Additive,
title={Additive Powers-of-Two Quantization: An Efficient Non-uniform Discretization for Neural Networks},
author={Yuhang Li and Xin Dong and Wei Wang},
booktitle={International Conference on Learning Representations},
year={2020},
url={https://openreview.net/forum?id=BkgXT24tDS}
}

This repo contains the code and data of the paper accepeted by ICLR 2020

Additive Power-of-Two Quantization: An Efficient Non-uniform Discretization For Neural Networks

quantize_function

Updates

  • May 16 2020: New quantization function, checkpoints for ImageNet, and slides for brief introduction.
  • May 17 2020: Add implementation for calibrated gradients in 2-bit weight quantization and grad scale.
  • Dec 18 2020: Add MobilenetV2 implmentation.
  • Feb 2021: Our new paper BRECQ has been accepted at ICLR 2021, a new state-of-the-art in post-training quantization and can quantize ResNet-18 in 20 mins! (Paper, Code)

Installation

Prerequisites

Pytorch 1.1.0 with CUDA

Dataset Preparation

  • The models are trained using internal framework and we only release the checkpoints as well as the logs, please prepare the ImageNet validation and training dataset, we use official example code here to load data.
  • The CIFAR10 dataset can be download automatically (update soon).

ImageNet

models.quant_layer.py contains the configuration for quantization. In particular, you can specify them in the class QuantConv2d:

class QuantConv2d(nn.Conv2d):
    """Generates quantized convolutional layers.

    args:
        bit(int): bitwidth for the quantization,
        power(bool): (A)PoT or Uniform quantization
        additive(float): Use additive or vanilla PoT quantization

    procedure:
        1. determine if the bitwidth is illegal
        2. if using PoT quantization, then build projection set. (For 2-bit weights quantization, PoT = Uniform)
        3. generate the clipping thresholds

    forward:
        1. if bit = 32(full precision), call normal convolution
        2. if not, first normalize the weights and then quantize the weights and activations
        3. if bit = 2, apply calibrated gradients uniform quantization to weights
    """

    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=False, bit=5, power=True, additive=True, grad_scale=None):
        super(QuantConv2d, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias)
        self.layer_type = 'QuantConv2d'
        self.bit = bit
        self.power = power
        self.grad_scale = grad_scale
        if power:
            if self.bit > 2:
                self.proj_set_weight = build_power_value(B=self.bit-1, additive=additive)
            self.proj_set_act = build_power_value(B=self.bit, additive=additive)
        self.act_alpha = torch.nn.Parameter(torch.tensor(6.0))
        self.weight_alpha = torch.nn.Parameter(torch.tensor(3.0))

Here, self.bit controls the bitwidth; power=True means we use PoT or APoT (use additive to specify). build_power_value construct the levels set Q^a(1, b) with parameter bit and additive. If power=False, the conv layer will adopt uniform quantization.

To train a 5-bit model, just run main.py:

python main.py -a resnet18 --bit 5

Progressive initialization requires checkpoint of higher bitwidth. For example

python main.py -a resnet18 --bit 4 --pretrained checkpoint/res18_5best.pth.tar

We provide a function show_params() to print the clipping parameter in both weights and activations

Results and Checkpoints

Checkpoints are released in Google Drive.

Model Precision Hyper-Params Accuracy Checkpoints
ResNet-18 5-bit batch1k_lr0.01_wd0.0001_100epoch 70.75 res18_5bit
ResNet-18 4-bit batch1k_lr0.01_wd0.0001_100epoch 70.74 res18_4bit
ResNet-18 3-bit batch1k_lr0.01_wd0.0001_100epoch 69.79 res18_3bit
ResNet-18 2-bit batch1k_lr0.04_wd0.00002_100epoch_cg 66.46 res18_2bit
ResNet-34 5-bit batch1k_lr0.1_wd0.0001_100epoch 74.26 res34_5bit
ResNet-34 4-bit batch1k_lr0.1_wd0.0001_100epoch 74.12 res34_4bit
ResNet-34 3-bit batch1k_lr0.1_wd0.0001_100epoch 73.55 res34_3bit
ResNet-34 2-bit batch1k_lr0.1_wd0.00002_100epoch_cg 71.30 res34_2bit
ResNet-50 4-bit batch512_lr0.05_wd0.0001_100epoch 76.80 Updating
ResNet-50 3-bit batch512_lr0.05_wd0.0001_100epoch 75.92 Updating
ResNet-50 2-bit batch512_lr0.05_wd0.00025_100epoch_cg - Updating

Compared with Uniform Quantization

Use power=False to switch to the uniform quantization, results:

Model Precision Hyper-Params Accuracy Compared with APoT
ResNet-18 4-bit batch1k_lr0.01_wd0.0001_100epoch 70.54 -0.2
ResNet-18 3-bit batch1k_lr0.01_wd0.0001_100epoch 69.57 -0.22
ResNet-18 2-bit batch1k_lr0.01_wd0.00002_100epoch - Updating

Training and Validation Curve

cd $PATH-TO-THIS-PROJECT/ImageNet/events
tensorboard --logdir 'res18' --port 6006

logs

Hyper-Parameter Exploration

To be updated

CIFAR10

(CIFAR10 codes will be updated soon.)

The training code is inspired by pytorch-cifar-code from junyuseu.

The dataset can be downloaded automatically using torchvision. We provide the shell script to progressively train full precision, 4, 3, and 2 bit models. For example, train_res20.sh :

#!/usr/bin/env bash
python main.py --arch res20 --bit 32 -id 0,1 --wd 5e-4
python main.py --arch res20 --bit 4 -id 0,1 --wd 1e-4  --lr 4e-2 \
        --init result/res20_32bit/model_best.pth.tar
python main.py --arch res20 --bit 3 -id 0,1 --wd 1e-4  --lr 4e-2 \
        --init result/res20_4bit/model_best.pth.tar
python main.py --arch res20 --bit 2 -id 0,1 --wd 3e-5  --lr 4e-2 \
        --init result/res20_3bit/model_best.pth.tar

The checkpoint models for CIFAR10 are released:

Model Precision Accuracy Checkpoints
Res20 Full Precision 92.96 Res20_32bit
Res20 4-bit 92.45 Res20_4bit
Res20 3-bit 92.49 Res20_3bit
Res20 2-bit 90.96 Res20_2bit
Res56 Full Precision 94.46 Res56_32bit
Res56 4-bit 93.93 Res56_4bit
Res56 3-bit 93.77 Res56_3bit
Res56 2-bit 93.05 Res56_2bit

To evluate the models, you can run

python main.py -e --init result/res20_3bit/model_best.pth.tar -e -id 0 --bit 3

And you will get the output of accuracy and the value of clipping threshold in weights & acts:

Test: [0/100]   Time 0.221 (0.221)      Loss 0.2144 (0.2144)    Prec 96.000% (96.000%)
 * Prec 92.510%
clipping threshold weight alpha: 1.569000, activation alpha: 1.438000
clipping threshold weight alpha: 1.278000, activation alpha: 0.966000
clipping threshold weight alpha: 1.607000, activation alpha: 1.293000
clipping threshold weight alpha: 1.426000, activation alpha: 1.055000
clipping threshold weight alpha: 1.364000, activation alpha: 1.720000
clipping threshold weight alpha: 1.511000, activation alpha: 1.434000
clipping threshold weight alpha: 1.600000, activation alpha: 2.204000
clipping threshold weight alpha: 1.552000, activation alpha: 1.530000
clipping threshold weight alpha: 0.934000, activation alpha: 1.939000
clipping threshold weight alpha: 1.427000, activation alpha: 2.232000
clipping threshold weight alpha: 1.463000, activation alpha: 1.371000
clipping threshold weight alpha: 1.440000, activation alpha: 2.432000
clipping threshold weight alpha: 1.560000, activation alpha: 1.475000
clipping threshold weight alpha: 1.605000, activation alpha: 2.462000
clipping threshold weight alpha: 1.436000, activation alpha: 1.619000
clipping threshold weight alpha: 1.292000, activation alpha: 2.147000
clipping threshold weight alpha: 1.423000, activation alpha: 2.329000
clipping threshold weight alpha: 1.428000, activation alpha: 1.551000
clipping threshold weight alpha: 1.322000, activation alpha: 2.574000
clipping threshold weight alpha: 1.687000, activation alpha: 1.314000

image-20200516213830422