login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323818
Number of connected set-systems covering n vertices.
111
1, 1, 4, 96, 31840, 2147156736, 9223372011084915712, 170141183460469231602560095199828453376, 57896044618658097711785492504343953923912733397452774312021795134847892828160
OFFSET
0,3
COMMENTS
Unlike the nearly identical sequence A092918, this sequence does not count under a(1) the a single-vertex hypergraph with no edges.
LINKS
FORMULA
E.g.f.: 1 - x + log(Sum_{n >= 0} 2^(2^n-1) * x^n/n!).
Logarithmic transform of A003465.
EXAMPLE
The a(2) = 4 set-systems:
{{1, 2}}
{{1}, {1,2}}
{{2}, {1,2}}
{{1}, {2}, {1,2}}
MAPLE
b:= n-> add(binomial(n, k)*2^(2^(n-k)-1)*(-1)^k, k=0..n):
a:= proc(n) option remember; b(n)-`if`(n=0, 0, add(
k*binomial(n, k)*b(n-k)*a(k), k=1..n-1)/n)
end:
seq(a(n), n=0..8); # Alois P. Heinz, Jan 30 2019
MATHEMATICA
nn=8;
ser=Sum[2^(2^n-1)*x^n/n!, {n, 0, nn}];
Table[SeriesCoefficient[1-x+Log[ser], {x, 0, n}]*n!, {n, 0, nn}]
PROG
(Magma)
m:=12;
f:= func< x | 1-x + Log( (&+[2^(2^n-1)*x^n/Factorial(n): n in [0..m+2]]) ) >;
R<x>:=PowerSeriesRing(Rationals(), m);
Coefficients(R!(Laplace( f(x) ))); // G. C. Greubel, Oct 04 2022
(SageMath)
m=12;
def f(x): return 1-x + log(sum(2^(2^n-1)*x^n/factorial(n) for n in range(m+2)))
def A_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( f(x) ).egf_to_ogf().list()
A_list(m) # G. C. Greubel, Oct 04 2022
CROSSREFS
Cf. A001187, A003465 (not necessarily connected), A016031, A048143, A092918, A293510, A317672, A323816, A323817 (no singletons), A323819 (unlabeled case).
Sequence in context: A098695 A307934 A059201 * A027638 A309483 A333539
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 30 2019
STATUS
approved