login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027638
Order of 2^n X 2^n unitary group H_n acting on Siegel modular forms.
4
4, 96, 46080, 371589120, 48514675507200, 101643290713836748800, 3409750224676138896064512000, 1830483982118721406049481526345728000, 15723497752907010191583185709179507111362560000
OFFSET
0,1
REFERENCES
B. Runge, On Siegel modular forms I, J. Reine Angew. Math., 436 (1993), 57-85.
LINKS
Simon Burton, Elijah Durso-Sabina, and Natalie C. Brown, Genons, Double Covers and Fault-tolerant Clifford Gates, arXiv:2406.09951 [quant-ph], 2024. See p. 18.
B. Runge, Codes and Siegel modular forms, Discrete Math. 148 (1996), 175-204.
FORMULA
a(n) = A003956(n)/2.
a(n) = 2^(n^2 + 2*n + 2) * Product_{j=1..n} (4^j - 1).
MAPLE
seq( 2^(n^2+2*n+2)*product(4^i -1, i=1..n), n=0..12);
MATHEMATICA
Table[2^(n^2+2n+2) Product[4^k-1, {k, n}], {n, 0, 10}] (* Harvey P. Dale, May 21 2018 *)
PROG
(Magma)
A027638:= func< n | n eq 0 select 4 else 2^(n^2+2*n+2)*(&*[4^j-1: j in [1..n]]) >;
[A027638(n): n in [0..15]]; // G. C. Greubel, Aug 04 2022
(SageMath)
from sage.combinat.q_analogues import q_pochhammer
def A027638(n): return (-1)^n*2^(n^2 + 2*n + 2)*q_pochhammer(n, 4, 4)
[A027638(n) for n in (0..15)] # G. C. Greubel, Aug 04 2022
(PARI) a(n) = my(ret=1); for(i=1, n, ret = ret<<(2*i)-ret); ret << (n^2+2*n+2); \\ Kevin Ryde, Aug 13 2022
CROSSREFS
KEYWORD
nonn,easy,nice
STATUS
approved